スキップしてメイン コンテンツに移動

Project Euler - Problem 14

問題

ある関数を繰り返し適用して得られる数列が最も長くなる初期値n(1,000,000未満)を求める問題です。

解答

nから始まる数列の長さをlen(n)で表すと、次のように定義できます:

  1. len(n) = 1 (n = 1)
  2. len(n) = len(3n + 1) + 1 (nは奇数)
  3. len(n) = len(n / 2) + 1 (nは偶数)

つまり、len(n)の計算は1.の場合を基底ケースとする再帰アルゴリズムとして実装できます。

これをそのまま実装しても答えが得られますが、非常に遅いです。高速化の為に少し検討を加えましょう。

まず56から始まる数列を考えます。56は偶数なので3.の場合に該当し、len(56) = len(56 / 2) + 1 = len(28) + 1です。また、9から始まる数列の場合は2.に該当し、len(9) = len(3 * 9 + 1) + 1 = len(28) + 1となります。 つまりlen(56) = len(9) = len(28) + 1というわけで、len(56)とlen(9)の値は実は同じです。2.と3.の再帰式を見て予想できるように、このような重複は度々起こるので、それぞれの計算でlen(28)の計算をやり直すようなことをしていると大きな無駄となります。

これを解決するには過去に計算したlen(n)の値を覚えておき、次に同じnが与えられた時には覚えていた値を返すようにします。そうすることで2度目以降の関数呼び出しでは計算を省くことができ、時間の節約になります。これは同じ引数に対して常に同じ値を返す(つまり参照透過性がある)関数一般に使えるテクニックで、これをメモ化と呼びます。

そう言うわけで長々と説明しましたが、要はProblem 10で使ったルックアップ・テーブルと同じものです。今回はクロージャ生成時に確保されたベクタの長さより大きいnが与えられる場合(十分大きい奇数が与えられた時)が有り得るので、上限(upper-limit)より大きいnに対してはその都度計算し直しています。

(use srfi-1)
(define (get-sequence-length next-value upper-limit)
  (define lookup-table (make-vector (+ upper-limit 1) 0))
  (define (sequence-length n)
    (let ((len (if (> n upper-limit) 0 (ref lookup-table n))))
      (if (not (zero? len)) len
          (let ((len
                 (+ 1 (sequence-length (next-value n)))))
            (unless (> n upper-limit) (set! (sequence-length n) len))
            len))))
  (set! (setter sequence-length)
        (lambda (n len) (set! (ref lookup-table n) len)))
  (set! (sequence-length 1) 1)
  sequence-length)
(define (solve)
  (define sequence-length
    (get-sequence-length (lambda (n) (if (even? n) (/ n 2) (+ (* 3 n) 1)))
                         999999))
  (car (fold (lambda (a b) (if (> (cdr a) (cdr b)) a b))
             '(0 . 0)
             (map (lambda (n) (cons n (sequence-length n))) (iota 999999 1)))))
(define (main argv)
  (display (solve))
  (newline))

コメント

このブログの人気の投稿

C の時間操作関数は tm 構造体の BSD 拡張を無視するという話

久しぶりに C++ (as better C) で真面目なプログラムを書いていて引っかかったので備忘録。 「拡張なんだから標準関数の挙動に影響するわけねえだろ」という常識人は読む必要はない。 要旨 time_t の表現は環境依存 サポートしている時刻は UTC とプロセスグローバルなシステム時刻 (local time) のみで、任意のタイムゾーン間の時刻変換を行う標準的な方法はない BSD / GNU libc は tm 構造体にタイムゾーン情報を含むが、tm -> time_t の変換 ( timegm / mktime ) においてその情報は無視される 事前知識 C 標準ライブラリにおいて時刻の操作に関係するものは time.h (C++ では ctime) ヘッダに定義されている。ここで時刻を表現するデータ型は2つある: time_t と tm である。time_t が第一義的な型であり、それを人間が扱い易いように分解した副次的な構造体が tm という関係になっている。なので標準ライブラリには現在時刻を time_t として取得する関数 ( time_t time(time_t *) ) が先ずあり、そこから time_t と tm を相互に変換する関数が定義されている。 ここで time_t の定義は処理系依存である。C / C++ 標準はそれが算術型であることを求めているのみで (C11 からは実数型に厳格化された)、その実体は任意である。POSIX においては UNIX epoch (1970-01-01T00:00:00Z) からのうるう秒を除いた経過秒数であることが保証されており Linux や BSD の子孫も同様だが、この事実に依存するのは移植性のある方法ではない。 一方で tm は構造体であり、最低限必要なデータメンバが規定されている: int tm_year : 1900 年からの年数 int tm_mon : 月 (0-based; 即ち [0, 11]) int tm_mday : 月初からの日数 (1-based) int tm_hour : 時 (Military clock; 即ち [0, 23]) int tm_min : 分 int tm_sec : 秒 (うるう秒を含み得るので [0...

BuckleScript が ReScript に改称し独自言語を導入した

Via: BuckleScript Good and Bad News - Psellos OCaml / ReasonML 文法と標準ライブラリを採用した JavaScript トランスパイラである BuckleScript が ReScript に改称した。 公式サイトによると改称の理由は、 Unifying the tools in one coherent platform and core team allows us to build features that wouldn’t be possible in the original BuckleScript + Reason setup. (単一のプラットフォームとコアチームにツールを統合することで従来の BuckleScript + Reason 体制では不可能であった機能開発が可能になる) とのこと。要は Facebook が主導する外部プロジェクトである ReasonML に依存せずに開発を進めていくためにフォークするという話で、Chromium のレンダリングエンジンが Apple の WebKit から Google 主導の Blink に切り替わったのと似た動機である (プログラミング言語の分野でも Object Pascal が Pascal を逸脱して Delphi Language になったとか PLT Scheme (の第一言語) が RnRS とは別路線に舵を切って Racket になったとか、割とよくある話である。) 公式ブログの Q&A によると OCaml / ReasonML 文法のサポートは継続され、既存の BuckleScript プロジェクトは問題なくビルドできるとのこと。ただし現時点で公式ドキュメントは ReScript 文法のみに言及しているなど、サポート水準のティアを分けて ReScript 文法を優遇することで移行を推進していく方針である。 上流である OCaml の更新は取り込み、AST の互換性も維持される。将来 ReScript から言語機能が削除されることは有り得るが、OCaml / ReasonML からは今日の BuckleScript が提供する機能すべてにアクセスできる。 現時点における ReScript の ...

js_of_ocaml の使い方

js_of_ocaml (jsoo) は Ocsigen が提供しているコンパイラである。その名の通り OCaml バイトコードから JavaScript コードを生成する。 これを使うことで OCaml で書いたプログラムを Web ブラウザや node.js で実行することができる。 インストール 単に OPAM を使えば良い: $ opam install js_of_ocaml js_of_ocaml-ocamlbuild js_of_ocaml-ppx バージョン 3.0 から OPAM パッケージが分割されたので、必要なライブラリやプリプロセッサは個別にインストールする必要がある。 とりあえず使うだけなら js_of_ocaml と js_of_ocaml-ppx の二つで十分。後述するように OCamlBuild でアプリケーションをビルドするなら js_of_ocaml-ocamlbuild も入れると良い。 これで js_of_ocaml コマンドがインストールされ、OCamlFind に js_of_ocaml 及びサブパッケージが登録される。 コンパイルの仕方 以下ソースファイル名は app.ml とし、ワーキングディレクトリにあるものとする。 手動でやる場合 一番安直な方法は、直接 js_of_ocaml コマンドを実行することである: $ # バイトコードにコンパイルする。js_of_ocaml.ppx は JavaScript オブジェクトの作成や操作の構文糖衣を使う場合に必要 $ ocamlfind ocamlc -package js_of_ocaml,js_of_ocaml.ppx -linkpkg -o app.byte app.ml $ # 得られたバイトコードを JavaScript にコンパイルする $ js_of_ocaml -o app.js app.byte OCamlBuild を使う場合 OCamlBuild を使う場合、.js 用のビルドルールを定義したディスパッチャが付属しているので myocamlbuild.ml でこれを使う: let () = Ocamlbuild_plugin . dispatch Ocamlbuild_js_of_ocaml . dispatcher $ # app.ml -...

OCaml で Web フロントエンドを書く

要旨 フロントエンド開発に Elm は堅くて速くてとても良いと思う。昨今の Flux 系アーキテクチャは代数的データ型と相性が良い。ところで工数を減らすためにはバックエンドも同じ言語で書いてあわよくば isomorphic にしてしまいたいところだが、Elm はバックエンドを書くには現状適していない。 OCaml なら js_of_ocaml でエコシステムを丸ごとブラウザに持って来れるのでフロントエンドもバックエンドも無理なく書けるはずである。まず The Elm Architecture を OCaml で実践できるようにするため Caelm というライブラリを書いている。俺の野望はまだまだこれからだ (未完) Elm と TEA について Elm というプログラミング言語がある。いわゆる AltJS の一つである。 ミニマリスティクな ML 系の関数言語で、型推論を持ち、型クラスを持たず、例外機構を持たず、変数の再代入を許さず、正格評価され、代数的データ型を持つ。 言語も小綺麗で良いのだが、何より付属のコアライブラリが体現する The Elm Architecture (TEA) が重要である。 TEA は端的に言えば Flux フロントエンド・アーキテクチャの変種である。同じく Flux の派生である Redux の README に TEA の影響を受けたと書いてあるので知っている人もいるだろう。 ビューなどから非同期に送信される Message (Redux だと Action) を受けて状態 (Model; Redux だと State) を更新すると、それに対応して Virtual DOM が再構築されビューがよしなに再描画され人生を書き換える者もいた——という一方向の流れはいずれにせよ同じである。 差異はオブジェクトではなく関数で構成されていることと、アプリケーション外部との入出力は非同期メッセージである Cmd / Sub を返す規約になっていることくらいだろうか。 後者は面白い特徴で、副作用のある処理はアプリケーションの外で起きて結果だけが Message として非同期に飛んでくるので、内部は純粋に保たれる。つまり Elm アプリケーションが相手にしないといけない入力は今現在のアプリケーションの完全な状態である Model と、時系列イベ...

大規模なデータをそれなりに効率良く計数できる Algorithm::LossyCount を書いた

要旨 Algorithm::LossyCount というモジュールを書きました。これを使うとそこそこメモリ効率良く大規模なデータの計数ができます。アクセスランキング集計とかに使えるんじゃないでしょうか。 Github MetaCPAN 動機 例えばブログホスティングサービスで HTTP サーバのアクセスログを集計して人気のあるブログ記事ランキングを出したいとします。 Perl でデータの出現頻度を計数するのはハッシュを使うのが鉄板なので、適当に書くとだいたいこんな感じのコードになると思います: #!/usr/bin/env perl use v5.18; my %access_counts; while (<>) { chomp; my $access_log = parse_access_log($_); next if is_article_request($access_log); ++$access_counts{$access_log->{requested_article}}; } my @popular_articles = ( sort { $b->[1] <=> $a->[1] } map { [ $_ => $access_counts{$_} ] } keys %access_counts )[0 .. 49]; say "Rank\tURL\tFreq."; for my $i (0 .. $#popular_articles) { say join "\t", $i + 1, @{ $popular_articles[$i] }; } sub is_article_request { ... } sub parse_access_log { ... } シンプルですね。 しかしブログの記事数はサービス全体で数千万から数億のオーダになります。一定期間に全記事にアクセスがあるわけではないにしろ、逐次計数していくとハッシュのキーが数千万件になってメモリが貧弱なマシンだと残念なことになります。 ところで Web ページのアクセス傾向に関しては Zipf の法則 1 が当てはまるこ...