スキップしてメイン コンテンツに移動

libcoro で並行処理プログラムを書く

libcoro という C のライブラリがある。Perl Mongers にはおなじみ (だった) 協調スレッド実装である Coro.pm のバックエンドとして使われているライブラリで、作者は Coro と同じく Marc Lehmann 氏。

coro というのは Coroutine (コルーチン) の略で、要するに処理の進行を明示的に中断して別の実行コンテキストに切り替えたり、そこからさらに再開できる機構のことである。言語やプラットフォームによって Fiber と呼ばれるものとほぼ同義。

(ネイティヴ) スレッドとの違いはとどのつまり並行処理と並列処理の違いで、スレッドは同時に複数の実行コンテキストが進行し得るがコルーチンはある時点では複数の実行コンテキストのうち高々一つだけが実行され得る。 スレッドに対するコルーチンの利点は主に理解のし易さにある。スレッドの実行中断と再開は予測不可能なタイミングで起こるため、メモリその他の共有資源へのアクセスが常に競合し得る。一方コルーチンは自発的に実行を中断するまでプロセスの資源を独占しているため、コンテキスト・スイッチをまたがない限り共有資源の排他制御や同期などを考えなくて良い。

同時に一つのコルーチンしか実行されないということは、プロセッサのコア数に対して処理がスケールアウトしないことを意味する。ただしシングルスレッドのプログラムでも IO などの間はプロセッサが遊んでいるため、非同期 IO とコルーチンを組み合わせるなどして待ち時間に別の処理を行わせることで効率を高められることが多い。 また1コアでの性能に関しては、コンテキスト・スイッチの回数が減り、またスイッチング自体もユーザモードで完結するため、スレッドよりも高速である場合が多い。このため「軽量スレッド」とも呼ばれることがある。

libcoro の特徴

C で利用できるコルーチン実装は複数あって、Wikipedia にある Coroutine の記事 を見ても片手では足りない数が挙げられている。

libcoro がその中でどう特徴付けられるかというとポータビリティが挙げられる。

実装のバックエンドは Windows の Fiber や POSIX の ucontext の他、setjmp/longjmppthread 果てはアセンブラによる実装が選択でき、API は共通である。 少なくとも setjmp/longjmp は C90 の標準ライブラリ関数なので現代の OS であれば利用できるはずだ。

ライブラリはヘッダファイルと実装を収めたソースコードファイル1つずつからなる。 CVS レポジトリには Makefile すら含まれていない。ビルドするにはバックエンドを選択するプリプロセッサマクロを定義するだけで良い:

# CORO_SJLJ は setjmp/longjmp を使った実装
bash-3.2$ clang -DCORO_SJLJ -c -o coro.o coro.c
bash-3.2$ ar crs libcoro.a coro.o

あとは使用するプログラムとリンクするだけ:

# マクロはライブラリのコンパイル時と同じものを与える必要がある
bash-3.2$ clang++ --std=c++11 -DCORO_SJLJ -I. coro_usage.cc -L. -lcoro -static

API

シンプルなライブラリにはシンプルな API しかない。できるのは「一つのコルーチンから別のコルーチンを指定してコンテキスト・スイッチする」ことだけである。

コルーチンを一つ生成して実行するには以下の手順を踏む。ドキュメントはヘッダファイル内のコメントのみだが素晴らしく詳細である。

1. スタックを初期化する

まずコルーチンが使用する専用のスタックを確保する。スタック領域を確保して coro_stack 構造体を初期化する関数 coro_stack_alloc を使用する。 スタックは第二引数に指定した個数のポインタが保持できる大きさになる。要するに指定した数に8倍したバイト数が確保される。通常は考えるのが面倒なので0を指定するとよしなに確保してくれる。 戻り値は確保の成否を返す。

struct coro_stack stack;
if (!coro_stack_alloc(&stack, 0)) {
  perror("coro_stack_alloc");
}

2. コルーチンを作成する

コルーチン自身は coro_context 型で表現される。これを初期化する関数は coro_create である。

第一引数に初期化したいコルーチンへのポインタを指定する。残りの引数はコルーチンとして実行すべき関数、コルーチンに渡す引数へのポインタ、確保したポインタのサイズ、そして確保したスタック領域へのポインタである。 最後の二つは前もって確保した coro_stacksptrssze メンバがそれぞれ対応する。malloc やなんかで勝手に確保したメモリ領域を渡すと落ちるので注意。

coro_context context;
coro_create(
    &context,
    [](void *) { ... },
    nullptr,
    stack.sptr,
    stack.ssze);

C++ ユーザに残念なお知らせ: 関数として lambda は使えるが変数はキャプチャできない。何故かというに、coro_create の第二引数の型 coro_funcvoid (*)(void *) の typedef に過ぎないので lambda から coro_func への型変換 operator void(*)(void *) が必要だからである (ところでこれが合法なメンバ関数名なのはひどすぎると思う)。

coro_func が受け取る void * には coro_create の第三引数が渡される。外部の環境 (というより呼出し元のコール・スタック) をコルーチン内から参照したければここに必要なものを詰めてお土産に持たせることになる。このあたりは C なので仕方がない。

3. コルーチンを実行する

コルーチンの実行を開始するにはちょっと工夫が要る。libcoro にはコンテキスト・スイッチする関数しかないので、スイッチ元となるコルーチンが要るからである。

それで実行開始と終了のために特別な「空の」コルーチンを生成する必要がある。これは coro_context を null ポインタと0で初期化することで得られる:

coro_context empty;
coro_create(&empty, nullptr, nullptr, nullptr, 0);

これで準備ができたので、空のコルーチンから目的のコルーチンへコンテキスト・スイッチする。その際に使うのは coro_transfer である:

coro_transfer(&empty, &context);

以降再び coro_transfer が呼ばれるまで context が表すコルーチンが独占的に実行される。 コルーチンの実行を終了するときは空のコルーチンへ再度コンテキスト・スイッチすれば良い。

4. リソースを開放する

処理が終わったらメモリの片付けをする。コルーチンは coro_destroy で破棄し、対応するスタックは coro_stack_free で開放する:

coro_destroy(context);
coro_stack_free(stack);

coro_destroy(empty);  // 空のコルーチンに対応するスタックはないので coro_stack_free は不要

注意点

コルーチンへの引数が void * なのでどうやっても型チェックは効かない。また渡したオブジェクトの寿命をコルーチンの実行終了まで保たせるのはプログラマの責任である。

外部の環境をコルーチン内から参照できないので、コンテキスト・スイッチしたいときに coro_transfer に渡す自分自身をどうやって指定するかが問題になる。手っ取り早いのは static coro_context contexts[MAX_COROS] でも作ってまとめておく方法である。真面目にやるなら汎用のスレッドローカルストレージに類する機構を作ってそこに入れておくのが良いと思う。 あるいはコルーチンへの引数としてコルーチン自身へのポインタを渡しても良い。この場合スイッチ先のコルーチンか、あるいはそれを決めるディスパッチャのようなものを一緒に渡す必要がある。

サンプル

お決まりの producer/consumer のサンプル・プログラムを書いた。

libcoro の上に直接並行処理プログラムを書くのはさすがに辛いものがあるので、ちょっと高水準なライブラリを書いてそれを使うことにした。C で書くには人生が短すぎるので C++ で書いた。

単純なラウンドロビン・ディスパッチャを実装してコンテキスト・スイッチする先を考えなくても良いようにした。真面目に並行処理するなら優先度つきキューやらコルーチンの実行状態表やら導入してもっとマシなスケジューリングが要るが考えたくない。 コルーチン間の通信には Coro ライクな Channel 機構を作ってそれを利用した。

自前ライブラリの実装が150行。ユーザーコードである main が30行。標準外ライブラリへの依存はない:


コメント

このブログの人気の投稿

京大テキストコーパスのパーサを書いた

要旨 CaboCha やなんかの出力形式であるところの京大テキストコーパス形式のパーサモジュールを Perl で書いたので紹介します。 Github Tarball on Github Ppages これを使うと例えば CaboCha の出力した係り受け関係を Perl のオブジェクトグラフとして取得できます。 使用例 単なる文節区切りの例。 #!/usr/bin/env perl use v5.18; use utf8; use IPC::Open3; use Parse::KyotoUniversityTextCorpus; use Parse::KyotoUniversityTextCorpus::MorphemeParser::MeCab; use Symbol qw//; my ($in, $out, $err); my $pid; BEGIN { ($in, $out, $err) = (Symbol::gensym, Symbol::gensym, Symbol::gensym); $pid = open3($in, $out, $err, cabocha => '-f1'); } END { close $out; close $err; waitpid $pid => 0 if defined $pid; } binmode STDOUT, ':encoding(utf8)'; binmode $in, ':encoding(utf8)'; binmode $out, ':encoding(utf8)'; my $parser = Parse::KyotoUniversityTextCorpus->new( morpheme_parser => Parse::KyotoUniversityTextCorpus::MorphemeParser::MeCab->new, ); say $in '星から出るのに、その子は渡り鳥を使ったんだと思う。'; say $in '出る日の朝、自分の星の片付けをした。'; close $in; my $sentence

救急外来にかかったときの記録

子どもの頃にかかった記憶はあるが自分で行ったことはなかったのでメモしておく。 先日怪我をした。より具体的に云うとランニング中に転倒し顎を地面に叩きつけた。深夜の12時ごろの話である。 その時点ては両手の擦傷が痛いとか下顎の間接が痛いとか奥歯のセラミックが割れなくて幸いだったといった程度だが、マスクを外して見るとなにやら下部に血がついている。 顎にも擦傷があるのかとうんざりしながら歩いて帰り、血の滲んだマスクを捨てて傷口を洗おうとしたところで皮膚が割けて肉が見えているのに気付いた。 一瞬顔が青くなったが単身なので倒れるわけにはいかない。幸い血は固まっていてそれほど出血していないし、先程まで運動していたからかあまり痛みもない。 この時点で明白な選択肢は3つあった。即ち: 救急車を呼ぶ 自力で病院へ行き救急外来を受診する 応急処置して朝になったら近場の医院を受診する である。まず 3 は精神的に無理だと悟った。血も完全には止まっていないし、痛みだしたら冷静に行動できなくなるだろう。 1 はいつでも可能だったが、意識明瞭で移動にも支障がない状態では憚られた。救急車が受け入れ先病院を探すのにも時間がかかると聞く。 結局とりあえず 1 をバックアップ案とし、2 の自分で連絡して病院へ向かうことにした。まずは病院探しである。このときだいたい 00:30 AM。 最初に連絡したのは最寄りの都立病院の ER だった。ここならタクシーで10分もかからない、のだが、なんと ER が現在休止しているとの回答だった。そんなことがあるのかと驚愕したがどうしようもない。 近場に形成外科の救急外来の開いている病院はないか尋ねたところ 消防庁の相談センター の電話番号を案内された。 ここで4つの病院を紹介された。余談だが相談の対応は人間だが番号の案内は自動音声に切り替わるので録音の用意をした方が良い (一応2回くり返してくれる。) いずれも若干遠くタクシーで2、30分かかるが仕方がない。最初に連絡した最寄りの病院はその日形成外科の当直医師がいなかった。二件目でトリアージの質問をされ、受け入れ可能とのことだったので受診先が決定。このとき 00:45 AM。 診察時に脱ぎ易い服に着替え (このときまでランニングウェアだった)、健康保険証を持って病院へ向かう。ガーゼがないのでマス

C の時間操作関数は tm 構造体の BSD 拡張を無視するという話

久しぶりに C++ (as better C) で真面目なプログラムを書いていて引っかかったので備忘録。 「拡張なんだから標準関数の挙動に影響するわけねえだろ」という常識人は読む必要はない。 要旨 time_t の表現は環境依存 サポートしている時刻は UTC とプロセスグローバルなシステム時刻 (local time) のみで、任意のタイムゾーン間の時刻変換を行う標準的な方法はない BSD / GNU libc は tm 構造体にタイムゾーン情報を含むが、tm -> time_t の変換 ( timegm / mktime ) においてその情報は無視される 事前知識 C 標準ライブラリにおいて時刻の操作に関係するものは time.h (C++ では ctime) ヘッダに定義されている。ここで時刻を表現するデータ型は2つある: time_t と tm である。time_t が第一義的な型であり、それを人間が扱い易いように分解した副次的な構造体が tm という関係になっている。なので標準ライブラリには現在時刻を time_t として取得する関数 ( time_t time(time_t *) ) が先ずあり、そこから time_t と tm を相互に変換する関数が定義されている。 ここで time_t の定義は処理系依存である。C / C++ 標準はそれが算術型であることを求めているのみで (C11 からは実数型に厳格化された)、その実体は任意である。POSIX においては UNIX epoch (1970-01-01T00:00:00Z) からのうるう秒を除いた経過秒数であることが保証されており Linux や BSD の子孫も同様だが、この事実に依存するのは移植性のある方法ではない。 一方で tm は構造体であり、最低限必要なデータメンバが規定されている: int tm_year : 1900 年からの年数 int tm_mon : 月 (0-based; 即ち [0, 11]) int tm_mday : 月初からの日数 (1-based) int tm_hour : 時 (Military clock; 即ち [0, 23]) int tm_min : 分 int tm_sec : 秒 (うるう秒を含み得るので [0

js_of_ocaml の使い方

js_of_ocaml (jsoo) は Ocsigen が提供しているコンパイラである。その名の通り OCaml バイトコードから JavaScript コードを生成する。 これを使うことで OCaml で書いたプログラムを Web ブラウザや node.js で実行することができる。 インストール 単に OPAM を使えば良い: $ opam install js_of_ocaml js_of_ocaml-ocamlbuild js_of_ocaml-ppx バージョン 3.0 から OPAM パッケージが分割されたので、必要なライブラリやプリプロセッサは個別にインストールする必要がある。 とりあえず使うだけなら js_of_ocaml と js_of_ocaml-ppx の二つで十分。後述するように OCamlBuild でアプリケーションをビルドするなら js_of_ocaml-ocamlbuild も入れると良い。 これで js_of_ocaml コマンドがインストールされ、OCamlFind に js_of_ocaml 及びサブパッケージが登録される。 コンパイルの仕方 以下ソースファイル名は app.ml とし、ワーキングディレクトリにあるものとする。 手動でやる場合 一番安直な方法は、直接 js_of_ocaml コマンドを実行することである: $ # バイトコードにコンパイルする。js_of_ocaml.ppx は JavaScript オブジェクトの作成や操作の構文糖衣を使う場合に必要 $ ocamlfind ocamlc -package js_of_ocaml,js_of_ocaml.ppx -linkpkg -o app.byte app.ml $ # 得られたバイトコードを JavaScript にコンパイルする $ js_of_ocaml -o app.js app.byte OCamlBuild を使う場合 OCamlBuild を使う場合、.js 用のビルドルールを定義したディスパッチャが付属しているので myocamlbuild.ml でこれを使う: let () = Ocamlbuild_plugin . dispatch Ocamlbuild_js_of_ocaml . dispatcher $ # app.ml ->

開発環境の構築に asdf が便利なので anyenv から移行した

プロジェクト毎に異なるバージョンの言語処理系やツールを管理するために、pyenv や nodenv など *env の利用はほとんど必須となっている。 これらはほとんど一貫したコマンド体系を提供しており、同じ要領で様々な環境構築ができる非常に便利なソフトウェアだが、それを使うことで別の問題が出てくる: *env 自身の管理である。 無数の *env をインストールし、シェルを設定し、場合によりプラグインを導入し、アップデートに追従するのは非常に面倒な作業だ。 幸いなことにこれをワンストップで解決してくれるソリューションとして anyenv がある。これは各種 *env のパッケージマネージャというべきもので、一度 anyenv をインストールすれば複数の *env を簡単にインストールして利用できる。さらに anyenv-update プラグインを導入すればアップデートまでコマンド一発で完了する。素晴らしい。 そういうわけでもう長いこと anyenv を使ってきた。それで十分だった。 ——のだが、 ここにもう一つ、対抗馬となるツールがある。 asdf である。anyenv に対する asdf の優位性は大きく2つある: 一貫性と多様性だ。 一貫性 “Manage multiple runtime versions with a single CLI tool” という触れ込み通り、asdf は様々な言語やツールの管理について一貫したインタフェースを提供している。対して anyenv は *env をインストールするのみで、各 *env はそれぞれ個別のインタフェースを持っている。 基本的なコマンド体系は元祖である rbenv から大きく外れないにしても、例えば jenv のように単体で処理系を導入する機能を持たないものもある。それらの差異はユーザが把握し対応する必要がある。 多様性 asdf はプラグインシステムを持っている。というより asdf 本体はインタフェースを規定するだけで、環境構築の実務はすべてプラグイン任せである。 そのプラグインの数は本稿を書いている時点でおよそ 300 を数える。これは言語処理系ばかりでなく jq などのユーティリティや MySQL のようなミドルウェアも含むが、いずれにしても膨大なツールが asdf を使えば