スキップしてメイン コンテンツに移動

LIBLINEAR 2.41 で One-class SVM が使えるようになったので Perl から触ってみよう

改訂 (Sep 15, 2020): 必要のない手順を含んでいたのでサンプルコードと記述を修正しました。

CPAN に Algorithm::LibLinear 0.22 がリリースされました (しました。) 高速な線形 SVM およびロジスティック回帰による複数の機械学習アルゴリズムを実装したライブラリである LIBLINEAR への Perl バインディングです。

利用している LIBLINEAR のバージョンが LIBLINEAR 2.30 から LIBLINEAR 2.41 に上がったことで新しいソルバが追加され、One-class SVM (OC-SVM) による一値分類が利用可能になっています (しました。)

OC-SVM って何

一値分類を SVM でやること。

一値分類って何

ある値が学習したクラスに含まれるか否かを決定する問題。 HBO の「シリコンバレー」に出てきた「ホットドッグ」と「ホットドッグ以外」を識別するアプリが典型。「ホットドッグ以外」の方は犬でも神でも一つの指輪でも何でも含まれるのがミソ。

二値分類の場合正反両者のデータを集める必要があるのに対して、一値分類の学習器は正例データのみしか要求しない (ものが多い。) 主な用途は外れ値検出で、もちろんホットドッグやホットドッグ様のものを検出したりもできる。

使い方

手順自体は他の二値ないし多値分類問題と同じです。つまり、

  1. 訓練パラメータを決めて
  2. 訓練データセットで訓練して
  3. テストデータセットで確度を検証して
  4. 十分良くなったらモデルを保存する

といういつもの流れ。

訓練パラメータ

use 5.032;
use Algorithm::LibLinear;

my $learner = Algorithm::LibLinear->new(
  epsilon => 0.01,
  nu => 0.75,
  solver => 'ONECLASS_SVM',
);

solver => 'ONECLASS_SVM' が一値分類用のソルバです。LIBLINEAR の train コマンドで言うところの -s 21。 OC-SVM の良いところは (ハイパー) パラメータが少ないことで、2個しかありません。epsilon は収束判定に使う指標で、nu は外れ値の見込の割合です。

訓練

use Algorithm::LibLinear::DataSet;

my $data_set = Algorithm::LibLinear::DataSet->load(fh => \*DATA);
my $model = $learner->train(data_set => $data_set);

# a9a training data.
# cf. https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#a9a
__DATA__
-1 3:1 11:1 14:1 19:1 39:1 42:1 55:1 64:1 67:1 73:1 75:1 76:1 80:1 83:1 
-1 5:1 7:1 14:1 19:1 39:1 40:1 51:1 63:1 67:1 73:1 74:1 76:1 78:1 83:1 
-1 3:1 6:1 17:1 22:1 36:1 41:1 53:1 64:1 67:1 73:1 74:1 76:1 80:1 83:1 
-1 5:1 6:1 17:1 21:1 35:1 40:1 53:1 63:1 71:1 73:1 74:1 76:1 80:1 83:1 
-1 2:1 6:1 18:1 19:1 39:1 40:1 52:1 61:1 71:1 72:1 74:1 76:1 80:1 95:1 
-1 3:1 6:1 18:1 29:1 39:1 40:1 51:1 61:1 67:1 72:1 74:1 76:1 80:1 83:1 
-1 4:1 6:1 16:1 26:1 35:1 45:1 49:1 64:1 71:1 72:1 74:1 76:1 78:1 101:1 
+1 5:1 7:1 17:1 22:1 36:1 40:1 51:1 63:1 67:1 73:1 74:1 76:1 81:1 83:1 
...

確度の検証

やるだけ。Algorithm::LibLinear::Model#predict が返すラベルは訓練データセットの値に関係なく 1 / -1 になります。

my $num_corrects = 0;
my $test_data_set = Algorithm::LibLinear->load(fh => \*DATA);
for my $data ($test_data_set->as_arrayref->@*) {
  my $predicted_label = $model->predict(feature => $data->{feature});
  ++$num_corrects if $data->{label} == $predicted_label;
}

my $test_data_set_size = $test_data_set->size;
say "$num_corrects / $test_data_set_size = ", $num_corrects / $test_data_set_size;

# a9a test data.
# cf. https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#a9a
__DATA__
-1 1:1 6:1 17:1 21:1 35:1 42:1 54:1 62:1 71:1 73:1 74:1 76:1 80:1 83:1
-1 3:1 6:1 14:1 22:1 36:1 40:1 56:1 63:1 67:1 73:1 74:1 76:1 82:1 83:1
+1 2:1 10:1 18:1 24:1 38:1 40:1 59:1 63:1 67:1 73:1 74:1 76:1 80:1 83:1
+1 4:1 6:1 16:1 20:1 37:1 40:1 54:1 63:1 71:1 73:1 75:1 76:1 80:1 83:1
-1 1:1 14:1 20:1 37:1 42:1 62:1 67:1 72:1 74:1 76:1 78:1 83:1
-1 3:1 6:1 17:1 31:1 35:1 42:1 49:1 64:1 67:1 73:1 74:1 76:1 78:1 83:1
-1 2:1 17:1 22:1 36:1 42:1 66:1 71:1 73:1 74:1 76:1 80:1 83:1
+1 5:1 7:1 14:1 23:1 39:1 40:1 52:1 63:1 67:1 73:1 75:1 76:1 78:1 83:1
...

モデルの保存

ラベルの対応も何もないので単に LIBLINEAR モデルを保存すれば十分です。

$model->save(filename => 'path/to/model');

# 復元
$model = Algorithm::LibLinear::Model->load(filename => 'path/to/model');

コード例

ここまで説明されても分からなかったらコピペして使おう:

#!/usr/bin/env perl

use 5.032;
use Algorithm::LibLinear;
use Algorithm::LibLinear::DataSet;

# Expects a9a or similar binary classification data set.
# cf. https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#a9a
my $training_data_file = shift or die "Usage: $0 <training-data-file>";
my $test_data_file = "${training_data_file}.t";

sub negative_rate {
  my ($data_set) = @_;

  my $num_negatives = grep { $_->{label} == -1 } $data_set->as_arrayref->@*;
  $num_negatives / $data_set->size;
}

sub train {
  my ($data_file) = @_;

  my $training_data =
    Algorithm::LibLinear::DataSet->load(filename => $data_file);
  my $negative_rate = negative_rate($training_data);

  # One-class SVM solver assumes that all the given data are positive instances
  # so labels are ignored. We need to filter out negative ones since binary data
  # set like a9a contains both.
  my $learner = Algorithm::LibLinear->new(
    nu => $negative_rate,
    solver => 'ONECLASS_SVM',
  );
  $learner->train(data_set => $training_data);
}

my $model = train($training_data_file);
my $test_data =
  Algorithm::LibLinear::DataSet->load(filename => $test_data_file);

my $num_corrects = 0;
for my $data ($test_data->as_arrayref->@*) {
  my $predicted_label = $model->predict(feature => $data->{feature});
  ++$num_corrects if $predicted_label == $data->{label};
}
printf
  "Correct: %d/%d; Accuracy: %f%%\n",
  $num_corrects,
  $test_data->size,
  +($num_corrects / $test_data->size * 100);

終わったので自慢

C ライブラリである LIBLINEAR には複数の言語バインディングがありますが、国立台湾大学の開発チームから公式に提供されているのは MATLAB / Octave / Python の三言語版で残りは有志による実装です。

Perl 版である A::LL はそれらの内で最も暇なメンテナを持つ積極的にメンテナンスされている実装であり、LIBLINEAR の各リリース後一ヶ月以内に追従してきました。今回も OC-SVM 機能をサポートした既知の非公式バインディングは A::LL が最初です。

そういう経緯も含めて開発チームのリーダーである Chih-Jen Lin 教授に依頼したところ、公式サイトの紹介中で対応バージョンを “The latest” (最新) と表示してもらうことができました:

Interfaces to LIBLINEAR

これは公式バインディングを除けば php-liblinear に次いで二例目です。php-liblinear は厳密に言えばバインディングではなく別個にインストールされた LIBLINEAR の train / predict コマンドを使用してテキスト分類を行うアプリケーション・ツールキットなので、ライブラリとして LIBLINEAR 自体の機能を提供する非公式バインディングは A::LL が現時点で唯一のものです。

コメント

このブログの人気の投稿

開発環境の構築に asdf が便利なので anyenv から移行した

プロジェクト毎に異なるバージョンの言語処理系やツールを管理するために、pyenv や nodenv など *env の利用はほとんど必須となっている。 これらはほとんど一貫したコマンド体系を提供しており、同じ要領で様々な環境構築ができる非常に便利なソフトウェアだが、それを使うことで別の問題が出てくる: *env 自身の管理である。 無数の *env をインストールし、シェルを設定し、場合によりプラグインを導入し、アップデートに追従するのは非常に面倒な作業だ。 幸いなことにこれをワンストップで解決してくれるソリューションとして anyenv がある。これは各種 *env のパッケージマネージャというべきもので、一度 anyenv をインストールすれば複数の *env を簡単にインストールして利用できる。さらに anyenv-update プラグインを導入すればアップデートまでコマンド一発で完了する。素晴らしい。 そういうわけでもう長いこと anyenv を使ってきた。それで十分だった。 ——のだが、 ここにもう一つ、対抗馬となるツールがある。 asdf である。anyenv に対する asdf の優位性は大きく2つある: 一貫性と多様性だ。 一貫性 “Manage multiple runtime versions with a single CLI tool” という触れ込み通り、asdf は様々な言語やツールの管理について一貫したインタフェースを提供している。対して anyenv は *env をインストールするのみで、各 *env はそれぞれ個別のインタフェースを持っている。 基本的なコマンド体系は元祖である rbenv から大きく外れないにしても、例えば jenv のように単体で処理系を導入する機能を持たないものもある。それらの差異はユーザが把握し対応する必要がある。 多様性 asdf はプラグインシステムを持っている。というより asdf 本体はインタフェースを規定するだけで、環境構築の実務はすべてプラグイン任せである。 そのプラグインの数は本稿を書いている時点でおよそ 300 を数える。これは言語処理系ばかりでなく jq などのユーティリティや MySQL のようなミドルウェアも含むが、いずれにしても膨大なツールが asdf を使えば

Perl 7 より先に Perl 5.34 が出るぞという話

Perl 5 の次期バージョンとして一部後方互換でない変更 (主に間接オブジェクト記法の削除とベストプラクティスのデフォルトでの有効化) を含んだメジャーバージョンアップである Perl 7 がアナウンスされたのは昨年の 6 月 のことだったが、その前に Perl 5 の次期周期リリースである Perl 5.34 が 5 月にリリース予定 である。 現在開発版は Perl 5.33.8 がリリースされておりユーザから見える変更は凍結、4 月下旬の 5.33.9 で全コードが凍結され 5 月下旬に 5.34.0 としてリリース予定とのこと。 そういうわけで事前に新機能の予習をしておく。 8進数数値リテラルの新構文 見た瞬間「マジかよ」と口に出た。これまで Perl はプレフィクス 0 がついた数値リテラルを8進数と見做してきたが、プレフィクスに 0o (zero, small o) も使えるようになる。 もちろんこれは2進数リテラルの 0b や 16進数リテラルの 0x との一貫性のためである。リテラルと同じ解釈で文字列を数値に変換する組み込み関数 oct も` 新構文を解するようになる。 昨今無数の言語に取り入れられているリテラル記法ではあるが、この記法の問題は o (small o) と 0 (zero) の区別が難しいことで、より悪いことに大文字も合法である: 0O755 Try / Catch 構文 Perl 5 のリリース以来 30 年ほど待たれた実験的「新機能」である。 Perl 5 における例外処理が特別な構文でなかったのは予約語を増やさない配慮だったはずだが、TryCatch とか Try::Tiny のようなモジュールが氾濫して当初の意図が無意味になったというのもあるかも知れない。 use feature qw/ try / ; no warnings qw/ experimental::try / ; try { failable_operation(); } catch ( $e ) { recover_from_error( $e ); } Raku (former Perl 6) だと CATCH (大文字なことに注意) ブロックが自分の宣言されたスコープ内で投げられた例外を捕らえる

macOS で GUI 版 Emacs を使う設定

macOS であっても端末エミュレータ上で CLI 版 Emacs を使っているプログラマは多いと思うが、端末側に修飾キーを取られたり東アジア文字の文字幅判定が狂ってウィンドウ描画が崩れたりなどしてあまり良いことがない。 それなら GUI 版の Emacs.app を使った方がマウスも使える上に treemacs などはアイコンも表示されてリッチな UI になる。 しかし何事も完璧とはいかないもので、CLI だと問題なかったものが GUI だと面倒になることがある。その最大の原因はシェルの子プロセスではないという点である。つまり macOS の GUI アプリケーションは launchd が起動しその環境変数やワーキングディレクトリを引き継ぐので、ファイルを開こうとしたらホームディレクトリ ( ~/ ) でなくルートディレクトリ ( / ) を見に行くし、ホームディレクトリなり /opt/local なりに好き勝手にインストールしたツールを run-* 関数やら shell やら flycheck やらで実行しようとしてもパスが通っていない。 ワーキングディレクトリに関しては簡単な解決策があり、 default-directory という変数をホームディレクトリに設定すれば良い。ただし起動時にスプラッシュスクリーンを表示する設定の場合、このバッファのワーキングディレクトリは command-line-default-directory で設定されており、デフォルト値が解決される前に適用されてしまうので併せて明示的に初期化する必要がある: (setq default-directory "~/") (setq command-line-default-directory "~/") 次にパスの問題だが、まさにこの問題を解決するために exec-path-from-shell というパッケージがある。これを使うとユーザのシェル設定を推定し、ログインシェルとして起動した場合の環境変数 PATH と MANPATH を取得して Emacs 上で同じ値を setenv する、という処理をやってくれる。MELPA にあるので package-install するだけで使えるようになる。 このパッケージは GUI

BuckleScript が ReScript に改称し独自言語を導入した

Via: BuckleScript Good and Bad News - Psellos OCaml / ReasonML 文法と標準ライブラリを採用した JavaScript トランスパイラである BuckleScript が ReScript に改称した。 公式サイトによると改称の理由は、 Unifying the tools in one coherent platform and core team allows us to build features that wouldn’t be possible in the original BuckleScript + Reason setup. (単一のプラットフォームとコアチームにツールを統合することで従来の BuckleScript + Reason 体制では不可能であった機能開発が可能になる) とのこと。要は Facebook が主導する外部プロジェクトである ReasonML に依存せずに開発を進めていくためにフォークするという話で、Chromium のレンダリングエンジンが Apple の WebKit から Google 主導の Blink に切り替わったのと似た動機である (プログラミング言語の分野でも Object Pascal が Pascal を逸脱して Delphi Language になったとか PLT Scheme (の第一言語) が RnRS とは別路線に舵を切って Racket になったとか、割とよくある話である。) 公式ブログの Q&A によると OCaml / ReasonML 文法のサポートは継続され、既存の BuckleScript プロジェクトは問題なくビルドできるとのこと。ただし現時点で公式ドキュメントは ReScript 文法のみに言及しているなど、サポート水準のティアを分けて ReScript 文法を優遇することで移行を推進していく方針である。 上流である OCaml の更新は取り込み、AST の互換性も維持される。将来 ReScript から言語機能が削除されることは有り得るが、OCaml / ReasonML からは今日の BuckleScript が提供する機能すべてにアクセスできる。 現時点における ReScript の

部分継続チュートリアル

この文書について これは Community Scheme Wiki で公開されている composable-continuations-tutorial (2010年09月30日版)の日本語訳です。 誤字脱字・誤訳などがありましたらコメントあるいはメールで御指摘いただけると幸いです。 本訳は原文のライセンスに基づき Creative Commons Attribution-ShareAlike 2.0 Generic の下で公開されます。 Original text: Copyright© 2006-2010 Community Scheme Wiki Japanese translation: Copyright© 2011 SATOH Koichi 本文 部分継続(Composable continuation)は継続区間を具象化することで制御を逆転させるものです。 ウンザリするほど複雑な概念を表す長ったらしいジャーゴンのように聞こえますが、実際はそうではありません。今からそれを説明します。 reset と shift という2つのスペシャルフォームを導入するところから始めましょう [1] 。 (reset expression) は特別な継続を作るなりスタックに目印を付けるなりしてから expression を評価します。簡単に言えば、 expression が評価されるとき、あとから参照できる評価中の情報が存在するということです。 実際には shift がこの情報を参照します。 (shift variable expression) は目印のついた場所、つまり reset を使った場所にジャンプし、その場所から shift を呼び出した場所までのプログラムの断片を保存します; これはプログラムの区間を「部分継続」として知られる組み合わせ可能な手続きに具象化し、この手続きに variable を束縛してから expression を評価します。 組み合わせ可能(Composable)という語はその手続きが呼び出し元に戻ってくるため、他の手続きと組み合わせられることから来ています。 Composable continuationの別名として例えば限定継続(Delimited continuation)や部分継続(Partia