スキップしてメイン コンテンツに移動

LIBLINEAR 2.41 で One-class SVM が使えるようになったので Perl から触ってみよう

改訂 (Sep 15, 2020): 必要のない手順を含んでいたのでサンプルコードと記述を修正しました。

CPAN に Algorithm::LibLinear 0.22 がリリースされました (しました。) 高速な線形 SVM およびロジスティック回帰による複数の機械学習アルゴリズムを実装したライブラリである LIBLINEAR への Perl バインディングです。

利用している LIBLINEAR のバージョンが LIBLINEAR 2.30 から LIBLINEAR 2.41 に上がったことで新しいソルバが追加され、One-class SVM (OC-SVM) による一値分類が利用可能になっています (しました。)

OC-SVM って何

一値分類を SVM でやること。

一値分類って何

ある値が学習したクラスに含まれるか否かを決定する問題。 HBO の「シリコンバレー」に出てきた「ホットドッグ」と「ホットドッグ以外」を識別するアプリが典型。「ホットドッグ以外」の方は犬でも神でも一つの指輪でも何でも含まれるのがミソ。

二値分類の場合正反両者のデータを集める必要があるのに対して、一値分類の学習器は正例データのみしか要求しない (ものが多い。) 主な用途は外れ値検出で、もちろんホットドッグやホットドッグ様のものを検出したりもできる。

使い方

手順自体は他の二値ないし多値分類問題と同じです。つまり、

  1. 訓練パラメータを決めて
  2. 訓練データセットで訓練して
  3. テストデータセットで確度を検証して
  4. 十分良くなったらモデルを保存する

といういつもの流れ。

訓練パラメータ

use 5.032;
use Algorithm::LibLinear;

my $learner = Algorithm::LibLinear->new(
  epsilon => 0.01,
  nu => 0.75,
  solver => 'ONECLASS_SVM',
);

solver => 'ONECLASS_SVM' が一値分類用のソルバです。LIBLINEAR の train コマンドで言うところの -s 21。 OC-SVM の良いところは (ハイパー) パラメータが少ないことで、2個しかありません。epsilon は収束判定に使う指標で、nu は外れ値の見込の割合です。

訓練

use Algorithm::LibLinear::DataSet;

my $data_set = Algorithm::LibLinear::DataSet->load(fh => \*DATA);
my $model = $learner->train(data_set => $data_set);

# a9a training data.
# cf. https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#a9a
__DATA__
-1 3:1 11:1 14:1 19:1 39:1 42:1 55:1 64:1 67:1 73:1 75:1 76:1 80:1 83:1 
-1 5:1 7:1 14:1 19:1 39:1 40:1 51:1 63:1 67:1 73:1 74:1 76:1 78:1 83:1 
-1 3:1 6:1 17:1 22:1 36:1 41:1 53:1 64:1 67:1 73:1 74:1 76:1 80:1 83:1 
-1 5:1 6:1 17:1 21:1 35:1 40:1 53:1 63:1 71:1 73:1 74:1 76:1 80:1 83:1 
-1 2:1 6:1 18:1 19:1 39:1 40:1 52:1 61:1 71:1 72:1 74:1 76:1 80:1 95:1 
-1 3:1 6:1 18:1 29:1 39:1 40:1 51:1 61:1 67:1 72:1 74:1 76:1 80:1 83:1 
-1 4:1 6:1 16:1 26:1 35:1 45:1 49:1 64:1 71:1 72:1 74:1 76:1 78:1 101:1 
+1 5:1 7:1 17:1 22:1 36:1 40:1 51:1 63:1 67:1 73:1 74:1 76:1 81:1 83:1 
...

確度の検証

やるだけ。Algorithm::LibLinear::Model#predict が返すラベルは訓練データセットの値に関係なく 1 / -1 になります。

my $num_corrects = 0;
my $test_data_set = Algorithm::LibLinear->load(fh => \*DATA);
for my $data ($test_data_set->as_arrayref->@*) {
  my $predicted_label = $model->predict(feature => $data->{feature});
  ++$num_corrects if $data->{label} == $predicted_label;
}

my $test_data_set_size = $test_data_set->size;
say "$num_corrects / $test_data_set_size = ", $num_corrects / $test_data_set_size;

# a9a test data.
# cf. https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#a9a
__DATA__
-1 1:1 6:1 17:1 21:1 35:1 42:1 54:1 62:1 71:1 73:1 74:1 76:1 80:1 83:1
-1 3:1 6:1 14:1 22:1 36:1 40:1 56:1 63:1 67:1 73:1 74:1 76:1 82:1 83:1
+1 2:1 10:1 18:1 24:1 38:1 40:1 59:1 63:1 67:1 73:1 74:1 76:1 80:1 83:1
+1 4:1 6:1 16:1 20:1 37:1 40:1 54:1 63:1 71:1 73:1 75:1 76:1 80:1 83:1
-1 1:1 14:1 20:1 37:1 42:1 62:1 67:1 72:1 74:1 76:1 78:1 83:1
-1 3:1 6:1 17:1 31:1 35:1 42:1 49:1 64:1 67:1 73:1 74:1 76:1 78:1 83:1
-1 2:1 17:1 22:1 36:1 42:1 66:1 71:1 73:1 74:1 76:1 80:1 83:1
+1 5:1 7:1 14:1 23:1 39:1 40:1 52:1 63:1 67:1 73:1 75:1 76:1 78:1 83:1
...

モデルの保存

ラベルの対応も何もないので単に LIBLINEAR モデルを保存すれば十分です。

$model->save(filename => 'path/to/model');

# 復元
$model = Algorithm::LibLinear::Model->load(filename => 'path/to/model');

コード例

ここまで説明されても分からなかったらコピペして使おう:

#!/usr/bin/env perl

use 5.032;
use Algorithm::LibLinear;
use Algorithm::LibLinear::DataSet;

# Expects a9a or similar binary classification data set.
# cf. https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#a9a
my $training_data_file = shift or die "Usage: $0 <training-data-file>";
my $test_data_file = "${training_data_file}.t";

sub negative_rate {
  my ($data_set) = @_;

  my $num_negatives = grep { $_->{label} == -1 } $data_set->as_arrayref->@*;
  $num_negatives / $data_set->size;
}

sub train {
  my ($data_file) = @_;

  my $training_data =
    Algorithm::LibLinear::DataSet->load(filename => $data_file);
  my $negative_rate = negative_rate($training_data);

  # One-class SVM solver assumes that all the given data are positive instances
  # so labels are ignored. We need to filter out negative ones since binary data
  # set like a9a contains both.
  my $learner = Algorithm::LibLinear->new(
    nu => $negative_rate,
    solver => 'ONECLASS_SVM',
  );
  $learner->train(data_set => $training_data);
}

my $model = train($training_data_file);
my $test_data =
  Algorithm::LibLinear::DataSet->load(filename => $test_data_file);

my $num_corrects = 0;
for my $data ($test_data->as_arrayref->@*) {
  my $predicted_label = $model->predict(feature => $data->{feature});
  ++$num_corrects if $predicted_label == $data->{label};
}
printf
  "Correct: %d/%d; Accuracy: %f%%\n",
  $num_corrects,
  $test_data->size,
  +($num_corrects / $test_data->size * 100);

終わったので自慢

C ライブラリである LIBLINEAR には複数の言語バインディングがありますが、国立台湾大学の開発チームから公式に提供されているのは MATLAB / Octave / Python の三言語版で残りは有志による実装です。

Perl 版である A::LL はそれらの内で最も暇なメンテナを持つ積極的にメンテナンスされている実装であり、LIBLINEAR の各リリース後一ヶ月以内に追従してきました。今回も OC-SVM 機能をサポートした既知の非公式バインディングは A::LL が最初です。

そういう経緯も含めて開発チームのリーダーである Chih-Jen Lin 教授に依頼したところ、公式サイトの紹介中で対応バージョンを “The latest” (最新) と表示してもらうことができました:

Interfaces to LIBLINEAR

これは公式バインディングを除けば php-liblinear に次いで二例目です。php-liblinear は厳密に言えばバインディングではなく別個にインストールされた LIBLINEAR の train / predict コマンドを使用してテキスト分類を行うアプリケーション・ツールキットなので、ライブラリとして LIBLINEAR 自体の機能を提供する非公式バインディングは A::LL が現時点で唯一のものです。

コメント

このブログの人気の投稿

C の時間操作関数は tm 構造体の BSD 拡張を無視するという話

久しぶりに C++ (as better C) で真面目なプログラムを書いていて引っかかったので備忘録。 「拡張なんだから標準関数の挙動に影響するわけねえだろ」という常識人は読む必要はない。 要旨 time_t の表現は環境依存 サポートしている時刻は UTC とプロセスグローバルなシステム時刻 (local time) のみで、任意のタイムゾーン間の時刻変換を行う標準的な方法はない BSD / GNU libc は tm 構造体にタイムゾーン情報を含むが、tm -> time_t の変換 ( timegm / mktime ) においてその情報は無視される 事前知識 C 標準ライブラリにおいて時刻の操作に関係するものは time.h (C++ では ctime) ヘッダに定義されている。ここで時刻を表現するデータ型は2つある: time_t と tm である。time_t が第一義的な型であり、それを人間が扱い易いように分解した副次的な構造体が tm という関係になっている。なので標準ライブラリには現在時刻を time_t として取得する関数 ( time_t time(time_t *) ) が先ずあり、そこから time_t と tm を相互に変換する関数が定義されている。 ここで time_t の定義は処理系依存である。C / C++ 標準はそれが算術型であることを求めているのみで (C11 からは実数型に厳格化された)、その実体は任意である。POSIX においては UNIX epoch (1970-01-01T00:00:00Z) からのうるう秒を除いた経過秒数であることが保証されており Linux や BSD の子孫も同様だが、この事実に依存するのは移植性のある方法ではない。 一方で tm は構造体であり、最低限必要なデータメンバが規定されている: int tm_year : 1900 年からの年数 int tm_mon : 月 (0-based; 即ち [0, 11]) int tm_mday : 月初からの日数 (1-based) int tm_hour : 時 (Military clock; 即ち [0, 23]) int tm_min : 分 int tm_sec : 秒 (うるう秒を含み得るので [0...

js_of_ocaml の使い方

js_of_ocaml (jsoo) は Ocsigen が提供しているコンパイラである。その名の通り OCaml バイトコードから JavaScript コードを生成する。 これを使うことで OCaml で書いたプログラムを Web ブラウザや node.js で実行することができる。 インストール 単に OPAM を使えば良い: $ opam install js_of_ocaml js_of_ocaml-ocamlbuild js_of_ocaml-ppx バージョン 3.0 から OPAM パッケージが分割されたので、必要なライブラリやプリプロセッサは個別にインストールする必要がある。 とりあえず使うだけなら js_of_ocaml と js_of_ocaml-ppx の二つで十分。後述するように OCamlBuild でアプリケーションをビルドするなら js_of_ocaml-ocamlbuild も入れると良い。 これで js_of_ocaml コマンドがインストールされ、OCamlFind に js_of_ocaml 及びサブパッケージが登録される。 コンパイルの仕方 以下ソースファイル名は app.ml とし、ワーキングディレクトリにあるものとする。 手動でやる場合 一番安直な方法は、直接 js_of_ocaml コマンドを実行することである: $ # バイトコードにコンパイルする。js_of_ocaml.ppx は JavaScript オブジェクトの作成や操作の構文糖衣を使う場合に必要 $ ocamlfind ocamlc -package js_of_ocaml,js_of_ocaml.ppx -linkpkg -o app.byte app.ml $ # 得られたバイトコードを JavaScript にコンパイルする $ js_of_ocaml -o app.js app.byte OCamlBuild を使う場合 OCamlBuild を使う場合、.js 用のビルドルールを定義したディスパッチャが付属しているので myocamlbuild.ml でこれを使う: let () = Ocamlbuild_plugin . dispatch Ocamlbuild_js_of_ocaml . dispatcher $ # app.ml -...

macOS で GUI 版 Emacs を使う設定

macOS であっても端末エミュレータ上で CLI 版 Emacs を使っているプログラマは多いと思うが、端末側に修飾キーを取られたり東アジア文字の文字幅判定が狂ってウィンドウ描画が崩れたりなどしてあまり良いことがない。 それなら GUI 版の Emacs.app を使った方がマウスも使える上に treemacs などはアイコンも表示されてリッチな UI になる。 しかし何事も完璧とはいかないもので、CLI だと問題なかったものが GUI だと面倒になることがある。その最大の原因はシェルの子プロセスではないという点である。つまり macOS の GUI アプリケーションは launchd が起動しその環境変数やワーキングディレクトリを引き継ぐので、ファイルを開こうとしたらホームディレクトリ ( ~/ ) でなくルートディレクトリ ( / ) を見に行くし、ホームディレクトリなり /opt/local なりに好き勝手にインストールしたツールを run-* 関数やら shell やら flycheck やらで実行しようとしてもパスが通っていない。 ワーキングディレクトリに関しては簡単な解決策があり、 default-directory という変数をホームディレクトリに設定すれば良い。ただし起動時にスプラッシュスクリーンを表示する設定の場合、このバッファのワーキングディレクトリは command-line-default-directory で設定されており、デフォルト値が解決される前に適用されてしまうので併せて明示的に初期化する必要がある: (setq default-directory "~/") (setq command-line-default-directory "~/") 次にパスの問題だが、まさにこの問題を解決するために exec-path-from-shell というパッケージがある。これを使うとユーザのシェル設定を推定し、ログインシェルとして起動した場合の環境変数 PATH と MANPATH を取得して Emacs 上で同じ値を setenv する、という処理をやってくれる。MELPA にあるので package-install するだけで使えるようになる。 このパッケージは GUI ...

BuckleScript が ReScript に改称し独自言語を導入した

Via: BuckleScript Good and Bad News - Psellos OCaml / ReasonML 文法と標準ライブラリを採用した JavaScript トランスパイラである BuckleScript が ReScript に改称した。 公式サイトによると改称の理由は、 Unifying the tools in one coherent platform and core team allows us to build features that wouldn’t be possible in the original BuckleScript + Reason setup. (単一のプラットフォームとコアチームにツールを統合することで従来の BuckleScript + Reason 体制では不可能であった機能開発が可能になる) とのこと。要は Facebook が主導する外部プロジェクトである ReasonML に依存せずに開発を進めていくためにフォークするという話で、Chromium のレンダリングエンジンが Apple の WebKit から Google 主導の Blink に切り替わったのと似た動機である (プログラミング言語の分野でも Object Pascal が Pascal を逸脱して Delphi Language になったとか PLT Scheme (の第一言語) が RnRS とは別路線に舵を切って Racket になったとか、割とよくある話である。) 公式ブログの Q&A によると OCaml / ReasonML 文法のサポートは継続され、既存の BuckleScript プロジェクトは問題なくビルドできるとのこと。ただし現時点で公式ドキュメントは ReScript 文法のみに言及しているなど、サポート水準のティアを分けて ReScript 文法を優遇することで移行を推進していく方針である。 上流である OCaml の更新は取り込み、AST の互換性も維持される。将来 ReScript から言語機能が削除されることは有り得るが、OCaml / ReasonML からは今日の BuckleScript が提供する機能すべてにアクセスできる。 現時点における ReScript の ...

Project Euler - Problem 27

問題 しばらく止まってましたが今日から再開。 原文 Considering quadratics of the form: n 2 + an + b, where |a| < 1000 and |b| < 1000 Find the product of the coefficients, a and b, for the quadratic expression that produces the maximum number of primes for consecutive values of n, starting with n = 0. 日本語訳 |a| < 1000, |b| < 1000 として以下の二次式を考える (ここで|a|は絶対値): n 2 + an + b n=0から始めて連続する整数で素数を生成したときに最長の長さとなる上の二次式の, 係数a, bの積を答えよ. 解答 最大探索範囲は-999 <= a <= 999、-999 <= b <= 999なので、およそ4,000,000通りの係数の組合せを試すことになります。組合せ毎に数列を生成して、それが素数か判定するわけですからたまりません。簡単な検討を加えて範囲を絞りましょう。 与えられた二次式をf(n)とおくと、f(0) = b、f(1) = a + b + 1です。 f(n)が長さ2以上の素数列を生成するならこれらは素数ですから、次のことがいえます: bは素数である a + b + 1は素数である b = 2のとき、aは偶数である それ以外のとき、aは奇数である 素数判定関数 is_prime には同じ引数が与えられることがよくあるのでメモ化しています。 #!/usr/bin/perl use strict; use warnings; use feature qw/say/; sub prime_seq_len($$) { my ($coeff_a, $coeff_b) = @_; my $len = 0; my $n = 0; $len++, $n++ while is_prime($n * ($n + $coeff_a) ...