スキップしてメイン コンテンツに移動

LIBLINEAR 2.41 で One-class SVM が使えるようになったので Perl から触ってみよう

改訂 (Sep 15, 2020): 必要のない手順を含んでいたのでサンプルコードと記述を修正しました。

CPAN に Algorithm::LibLinear 0.22 がリリースされました (しました。) 高速な線形 SVM およびロジスティック回帰による複数の機械学習アルゴリズムを実装したライブラリである LIBLINEAR への Perl バインディングです。

利用している LIBLINEAR のバージョンが LIBLINEAR 2.30 から LIBLINEAR 2.41 に上がったことで新しいソルバが追加され、One-class SVM (OC-SVM) による一値分類が利用可能になっています (しました。)

OC-SVM って何

一値分類を SVM でやること。

一値分類って何

ある値が学習したクラスに含まれるか否かを決定する問題。 HBO の「シリコンバレー」に出てきた「ホットドッグ」と「ホットドッグ以外」を識別するアプリが典型。「ホットドッグ以外」の方は犬でも神でも一つの指輪でも何でも含まれるのがミソ。

二値分類の場合正反両者のデータを集める必要があるのに対して、一値分類の学習器は正例データのみしか要求しない (ものが多い。) 主な用途は外れ値検出で、もちろんホットドッグやホットドッグ様のものを検出したりもできる。

使い方

手順自体は他の二値ないし多値分類問題と同じです。つまり、

  1. 訓練パラメータを決めて
  2. 訓練データセットで訓練して
  3. テストデータセットで確度を検証して
  4. 十分良くなったらモデルを保存する

といういつもの流れ。

訓練パラメータ

use 5.032;
use Algorithm::LibLinear;

my $learner = Algorithm::LibLinear->new(
  epsilon => 0.01,
  nu => 0.75,
  solver => 'ONECLASS_SVM',
);

solver => 'ONECLASS_SVM' が一値分類用のソルバです。LIBLINEAR の train コマンドで言うところの -s 21。 OC-SVM の良いところは (ハイパー) パラメータが少ないことで、2個しかありません。epsilon は収束判定に使う指標で、nu は外れ値の見込の割合です。

訓練

use Algorithm::LibLinear::DataSet;

my $data_set = Algorithm::LibLinear::DataSet->load(fh => \*DATA);
my $model = $learner->train(data_set => $data_set);

# a9a training data.
# cf. https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#a9a
__DATA__
-1 3:1 11:1 14:1 19:1 39:1 42:1 55:1 64:1 67:1 73:1 75:1 76:1 80:1 83:1 
-1 5:1 7:1 14:1 19:1 39:1 40:1 51:1 63:1 67:1 73:1 74:1 76:1 78:1 83:1 
-1 3:1 6:1 17:1 22:1 36:1 41:1 53:1 64:1 67:1 73:1 74:1 76:1 80:1 83:1 
-1 5:1 6:1 17:1 21:1 35:1 40:1 53:1 63:1 71:1 73:1 74:1 76:1 80:1 83:1 
-1 2:1 6:1 18:1 19:1 39:1 40:1 52:1 61:1 71:1 72:1 74:1 76:1 80:1 95:1 
-1 3:1 6:1 18:1 29:1 39:1 40:1 51:1 61:1 67:1 72:1 74:1 76:1 80:1 83:1 
-1 4:1 6:1 16:1 26:1 35:1 45:1 49:1 64:1 71:1 72:1 74:1 76:1 78:1 101:1 
+1 5:1 7:1 17:1 22:1 36:1 40:1 51:1 63:1 67:1 73:1 74:1 76:1 81:1 83:1 
...

確度の検証

やるだけ。Algorithm::LibLinear::Model#predict が返すラベルは訓練データセットの値に関係なく 1 / -1 になります。

my $num_corrects = 0;
my $test_data_set = Algorithm::LibLinear->load(fh => \*DATA);
for my $data ($test_data_set->as_arrayref->@*) {
  my $predicted_label = $model->predict(feature => $data->{feature});
  ++$num_corrects if $data->{label} == $predicted_label;
}

my $test_data_set_size = $test_data_set->size;
say "$num_corrects / $test_data_set_size = ", $num_corrects / $test_data_set_size;

# a9a test data.
# cf. https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#a9a
__DATA__
-1 1:1 6:1 17:1 21:1 35:1 42:1 54:1 62:1 71:1 73:1 74:1 76:1 80:1 83:1
-1 3:1 6:1 14:1 22:1 36:1 40:1 56:1 63:1 67:1 73:1 74:1 76:1 82:1 83:1
+1 2:1 10:1 18:1 24:1 38:1 40:1 59:1 63:1 67:1 73:1 74:1 76:1 80:1 83:1
+1 4:1 6:1 16:1 20:1 37:1 40:1 54:1 63:1 71:1 73:1 75:1 76:1 80:1 83:1
-1 1:1 14:1 20:1 37:1 42:1 62:1 67:1 72:1 74:1 76:1 78:1 83:1
-1 3:1 6:1 17:1 31:1 35:1 42:1 49:1 64:1 67:1 73:1 74:1 76:1 78:1 83:1
-1 2:1 17:1 22:1 36:1 42:1 66:1 71:1 73:1 74:1 76:1 80:1 83:1
+1 5:1 7:1 14:1 23:1 39:1 40:1 52:1 63:1 67:1 73:1 75:1 76:1 78:1 83:1
...

モデルの保存

ラベルの対応も何もないので単に LIBLINEAR モデルを保存すれば十分です。

$model->save(filename => 'path/to/model');

# 復元
$model = Algorithm::LibLinear::Model->load(filename => 'path/to/model');

コード例

ここまで説明されても分からなかったらコピペして使おう:

#!/usr/bin/env perl

use 5.032;
use Algorithm::LibLinear;
use Algorithm::LibLinear::DataSet;

# Expects a9a or similar binary classification data set.
# cf. https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#a9a
my $training_data_file = shift or die "Usage: $0 <training-data-file>";
my $test_data_file = "${training_data_file}.t";

sub negative_rate {
  my ($data_set) = @_;

  my $num_negatives = grep { $_->{label} == -1 } $data_set->as_arrayref->@*;
  $num_negatives / $data_set->size;
}

sub train {
  my ($data_file) = @_;

  my $training_data =
    Algorithm::LibLinear::DataSet->load(filename => $data_file);
  my $negative_rate = negative_rate($training_data);

  # One-class SVM solver assumes that all the given data are positive instances
  # so labels are ignored. We need to filter out negative ones since binary data
  # set like a9a contains both.
  my $learner = Algorithm::LibLinear->new(
    nu => $negative_rate,
    solver => 'ONECLASS_SVM',
  );
  $learner->train(data_set => $training_data);
}

my $model = train($training_data_file);
my $test_data =
  Algorithm::LibLinear::DataSet->load(filename => $test_data_file);

my $num_corrects = 0;
for my $data ($test_data->as_arrayref->@*) {
  my $predicted_label = $model->predict(feature => $data->{feature});
  ++$num_corrects if $predicted_label == $data->{label};
}
printf
  "Correct: %d/%d; Accuracy: %f%%\n",
  $num_corrects,
  $test_data->size,
  +($num_corrects / $test_data->size * 100);

終わったので自慢

C ライブラリである LIBLINEAR には複数の言語バインディングがありますが、国立台湾大学の開発チームから公式に提供されているのは MATLAB / Octave / Python の三言語版で残りは有志による実装です。

Perl 版である A::LL はそれらの内で最も暇なメンテナを持つ積極的にメンテナンスされている実装であり、LIBLINEAR の各リリース後一ヶ月以内に追従してきました。今回も OC-SVM 機能をサポートした既知の非公式バインディングは A::LL が最初です。

そういう経緯も含めて開発チームのリーダーである Chih-Jen Lin 教授に依頼したところ、公式サイトの紹介中で対応バージョンを “The latest” (最新) と表示してもらうことができました:

Interfaces to LIBLINEAR

これは公式バインディングを除けば php-liblinear に次いで二例目です。php-liblinear は厳密に言えばバインディングではなく別個にインストールされた LIBLINEAR の train / predict コマンドを使用してテキスト分類を行うアプリケーション・ツールキットなので、ライブラリとして LIBLINEAR 自体の機能を提供する非公式バインディングは A::LL が現時点で唯一のものです。

コメント

このブログの人気の投稿

多分週刊チラシの裏 (Sep 28 - Oct 04, 2020)

Chrome Web Store が有料 Chrome 拡張の取扱を終了 Chrome Web Store で提供されている有料 Chrome 拡張及びアプリ内課金 API の両方が 2021 年 1 月いっぱいで廃止される。 開発者はそれまでに代替となるサードパーティの課金 API に移行し、購入済ライセンスの移行手段も用意する必要がある。 この決定の発表時点で新規の有料ないしアプリ内課金のある Chrome 拡張の新規登録は終了している。実際のところ 2020 年 3 月時点で既に「一時的に」停止されており、その措置が恒久化されただけとの由。 シェルスクリプティングには長いオプションを使え 「短いオプション (e.g., -x ) はコマンドライン上での略記である。スクリプトにおいては自分や将来の同僚のためにも長いオプション (e.g., ---do-something ) を与える方が理解が容易だろう」という主張。 異論の余地なく正論である。 CobWeb - COBOL to WebAssembly Compiler COBOL から WebAssembly へのコンパイラ。いやマジで。 Cloudflare が何を思ったか同社のサーバレス環境である Workers に COBOL 対応を追加した際 の成果物である。 COBOL から C へのトランスレータである GNU COBOL と C コードをコンパイルして WebAssembly を出力する Emscripten から成っており、他の言語に比べて軽量なバイナリを生成するとのこと。 「ウチではそんな風にはやらないんだ (“We don’t do that here”)」 昨今ソフトウェア開発のコミュニティでも Code of Conduct を用意するところが増えてきたが、コミュニティの文化を明文化するのは難しい。 長大な「べからず集」は息苦しいし、肯定的なガイドラインは時に抽象的で実効的に使えない。問題となるようなふるまいの動機が善意であった場合は特にそうだ。 仮に優れたガイドラインがあっても、それに基いて人を実際に咎めるのは骨が折れることである。初中やればコミュニティ内でも疎まれる。 話の分かる相手ならそれでもまだ説得する意義もあるが、Web 上の対話で当事者双方が納得し合っ...

Project Euler - Problem 25

問題 原文 What is the first term in the Fibonacci sequence to contain 1000 digits? 日本語訳 1000桁になる最初の項の番号を答えよ. 解答 Gaucheのストリームライブラリを使ってみました。 (use util.stream) (define fibonacci-sequence (iterator->stream (lambda (yield end) (let loop ((a 1) (b 1)) (yield a) (loop b (+ a b)))))) (define (digits n) (define (digits-1 m acc) (if (< n m) acc (digits-1 (* m 10) (+ acc 1)))) (digits-1 1 0)) (define (solve) (+ 1 (stream-index (lambda (n) (= 1000 (digits n))) fibonacci-sequence))) (define (main argv) (display (solve)) (newline))

OCaml で Web フロントエンドを書く

要旨 フロントエンド開発に Elm は堅くて速くてとても良いと思う。昨今の Flux 系アーキテクチャは代数的データ型と相性が良い。ところで工数を減らすためにはバックエンドも同じ言語で書いてあわよくば isomorphic にしてしまいたいところだが、Elm はバックエンドを書くには現状適していない。 OCaml なら js_of_ocaml でエコシステムを丸ごとブラウザに持って来れるのでフロントエンドもバックエンドも無理なく書けるはずである。まず The Elm Architecture を OCaml で実践できるようにするため Caelm というライブラリを書いている。俺の野望はまだまだこれからだ (未完) Elm と TEA について Elm というプログラミング言語がある。いわゆる AltJS の一つである。 ミニマリスティクな ML 系の関数言語で、型推論を持ち、型クラスを持たず、例外機構を持たず、変数の再代入を許さず、正格評価され、代数的データ型を持つ。 言語も小綺麗で良いのだが、何より付属のコアライブラリが体現する The Elm Architecture (TEA) が重要である。 TEA は端的に言えば Flux フロントエンド・アーキテクチャの変種である。同じく Flux の派生である Redux の README に TEA の影響を受けたと書いてあるので知っている人もいるだろう。 ビューなどから非同期に送信される Message (Redux だと Action) を受けて状態 (Model; Redux だと State) を更新すると、それに対応して Virtual DOM が再構築されビューがよしなに再描画され人生を書き換える者もいた——という一方向の流れはいずれにせよ同じである。 差異はオブジェクトではなく関数で構成されていることと、アプリケーション外部との入出力は非同期メッセージである Cmd / Sub を返す規約になっていることくらいだろうか。 後者は面白い特徴で、副作用のある処理はアプリケーションの外で起きて結果だけが Message として非同期に飛んでくるので、内部は純粋に保たれる。つまり Elm アプリケーションが相手にしないといけない入力は今現在のアプリケーションの完全な状態である Model と、時系列イベ...

Perl 5 to 6 - 列挙型

これはMoritz Lenz氏のWebサイト Perlgeek.de で公開されているブログ記事 "Perl 5 to 6" Lesson 16 - Enums の日本語訳です。 原文は Creative Commons Attribution 3.0 Germany に基づいて公開されています。 本エントリには Creative Commons Attribution 3.0 Unported を適用します。 Original text: Copyright© 2008-2010 Moritz Lenz Japanese translation: Copyright© 2011 SATOH Koichi NAME "Perl 5 to 6" Lesson 16 - 列挙型 SYNOPSIS enum bit Bool <False True>; my $value = $arbitrary_value but True; if $value { say "Yes, it's true"; # 表示される } enum Day ('Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun'); if custom_get_date().Day == Day::Sat | Day::Sun { say "Weekend"; } DESCRIPTION 列挙型は用途の広い獣です。定数の列挙からなる低レベルのクラスであり、定数は典型的には整数や文字列です(が任意のものが使えます)。 これらの定数は派生型やメソッド、あるいは通常の値のようにふるまいます。 but 演算子でオブジェクトに結びつけることができ、これによって列挙型を値に「ミックスイン」できます: my $x = $today but Day::Tue; 列挙型の型名を関数のように使うこともでき、引数として値を指定できます: $x = $today but Day($weekday); ...

Project Euler - Problem 31

問題 原文 How many different ways can £2 be made using any number of coins? 日本語訳 いくらかの硬貨を使って2ポンドを作る方法はいくつあるでしょうか? 解答 ポンドとペンスを別々に扱うのは面倒と無駄以外の何者でもないので、単位をペンスに統一します。よって問題は合計が200ペンスとなるコインの組み合わせは何通りあるかです。 コインを昇順にC i (i = 0, 1, 2, ..., 7)と番号づけることにします。 合計nペンスとなるC k 以下のコインを使った組み合わせをcc(n, k)と表すと、次のようになります: cc(0, k) = 1 cc(n, 1) = 1 cc(n, k) = Σ(cc(n - iC k , k - 1))、ただしi ∈ { 0 , 1, 2, ..., floor(n / C k ) } 副問題は同じものが何度も出てくるのでメモ化しています。 #!/usr/bin/env perl use strict; use warnings; use feature qw/say state/; use List::Util qw/sum/; sub coin_comb($;$); { my @coins = (1, 2, 5, 10, 20, 50, 100, 200); sub coin_comb($;$) { state %memos; my ($currency, $coin_idx) = @_; $coin_idx //= $#coins; return $memos{$currency, $coin_idx} if exists $memos{$currency, $coin_idx}; return 1 if $currency == 0; return 1 if $coin_idx == 0; use integer; $memos{$currency, $coin_idx} = sum map { coin_comb($currency - $coins[$coin_idx] * $_, $coin_idx...