スキップしてメイン コンテンツに移動

Algorithm::LibLinear Tutorial

About this article

This article is meant to be an introduction guide of Algorithm::LibLinear, a Perl binding to the famous LIBLINEAR machine learning toolkit.

I've once written an article titled "Algorithm::LibLinear の紹介" ("Introduction to Algorithm::LibLinear,") in Japanese. Today, although some part of the article is outdated, Blogger's access analytics reported me that the article is still popular, and fairly large number of visitors are from English-speaking country. Thus I guessed I should prepare an updated tutorial in English.

Notice that what I try to describe here is library usage, not a machine learning methodology. If you are new to machine learning, I recommend to read a practical guide by Chih-Wei Hsu, et al and try LIBSVM/LIBLINEAR using CLI commands at first.

As you might see my English skill is not so great. Please don't hesitate to point/correct unclear part of this article and help me to fix it.

Installation

Algorithm::LibLinear is an XS library. So a compiler is needed for compiling C/C++ dependencies.

Nov 2, 2015 at present, the latest version of Algorithm::LibLinear is v0.16 (based on LIBLINEAR 2.1) and available on CPAN. You can install the library using cpan or cpanm command (since dependencies to be compiled are bundled in the distribution, no additional instruction should be required ):

cpanm Algorithm::LibLinear

Class overview

You should consider only 4 main classes:

  • Algorithm::LibLinear - Trainer class. Holds training setting and generates trained model.
  • Algorithm::LibLinear::DataSet - Dataset.
  • Algorithm::LibLinear::FeatureScaling - Utility class for scaling feature range.
  • Algorithm::LibLinear::Model - Trained classifier (classification) / Estimated function (regression.)

Note that all the classes are immutable. Once created there's no method to modify it.

Executing training

On training, first you prepare a training dataset as Algorithm::LibLinear::DataSet and regulate it using Algorithm::LibLinear::FeatureScaling object:

use Algorithm::LibLinaer;  # This also loads Algorithm::LibLinear::{DataSet,Model} for convinence.
use Algorithm::LibLinear::FeatureScaling;  # FeatureScaling class is sometimes unused. So load it manually when you use.

# |A::LL::DataSet#load| loads LIBSVM format data from string/file.
my $data_set = Algorithm::LibLinear::DataSet->load(string => <<EOS);
+1 1:0.708333 2:1 3:1 4:-0.320755 5:-0.105023 6:-1 7:1 8:-0.419847 9:-1 10:-0.225806 12:1 13:-1 
-1 1:0.583333 2:-1 3:0.333333 4:-0.603774 5:1 6:-1 7:1 8:0.358779 9:-1 10:-0.483871 12:-1 13:1 
+1 1:0.166667 2:1 3:-0.333333 4:-0.433962 5:-0.383562 6:-1 7:-1 8:0.0687023 9:-1 10:-0.903226 11:-1 12:-1 13:1 
-1 1:0.458333 2:1 3:1 4:-0.358491 5:-0.374429 6:-1 7:-1 8:-0.480916 9:1 10:-0.935484 12:-0.333333 13:1 
...
EOS

# Scale all the data for ensuring each value is within {-1, +1}.
my $scaler = Algorithm::LibLinear::FeatureScaling->new(
   data_set => $data_set,
   lower_bound => -1,
   upper_bound => +1,
);
# Save scaling parameter for scaling test data later.
$scaler->save(filename => '/path/to/scaling_parameter_file');

# Since A::LL::DataSet is immutable, |scale| method creates a new scaled instance.
$data_set = $scaler->scale(data_set => $data_set);

Historical note: As of v0.08, Algorithm::LibLinear::ScalingParameter was provided instead of Algorithm::LibLinear::FeatureScaling class. It was removed from v0.09+ due to its complex interface.

Then you set up an Algorithm::LibLinear instance with training parameter:

my $learner = Algorithm::LibLinear->new(
    # |solver| determines learning algorithm and type of trained object ("SVC" is for SVM classification).
    solver => 'L2R_L2LOSS_SVC_DUAL',
    # Training parameters are problem-dependent.
    cost => 1,
    epsilon => 0.01,
);

At last, you give the dataset to the trainer then take a trained Algorithm::LibLinear::Model object:

# This process may take several minutes (depends on dataset size.)
my $model = $learner->train(data_set => $data_set);

# Save the model for later use.
$model->save(filename => '/path/to/model_file');

After that, trainer and dataset are no longer required. So you can undef them for increasing free memory.

Using trained model

Now you have a trained classifier model. You can predict a class label which a given feature to belong:

my %unknown_feature = (
    1 => 0.875,
    2 => -1,
    3 => -0.333333,
    4 => -0.509434,
    5 => -0.347032,
    6 => -1,
    7 => 1,
    8 => -0.236641,
    9 => 1,
    10 => -0.935484,
    11 => -1,
    12 => -0.333333,
    13 => -1,
);
my $scaled_feature = $scaler->scale(feature => \%unknown_feature);
my $class_label = $model->predict(feature => $scaled_feature);

Features are represented as HashRefs which having integer (> 0) keys, as same as training dataset. Note that feature scaling with same parameter as training is important.

Before you go

Git repository is on GitHub. Please report any issues / send patches to there, not to CPAN RT (I rarely watch it).

For more detail on API, refer perldoc Algorithm::LibLinear. And LIBLINEAR's README file which describes equivalent C API might be help.

コメント

このブログの人気の投稿

C の時間操作関数は tm 構造体の BSD 拡張を無視するという話

久しぶりに C++ (as better C) で真面目なプログラムを書いていて引っかかったので備忘録。 「拡張なんだから標準関数の挙動に影響するわけねえだろ」という常識人は読む必要はない。 要旨 time_t の表現は環境依存 サポートしている時刻は UTC とプロセスグローバルなシステム時刻 (local time) のみで、任意のタイムゾーン間の時刻変換を行う標準的な方法はない BSD / GNU libc は tm 構造体にタイムゾーン情報を含むが、tm -> time_t の変換 ( timegm / mktime ) においてその情報は無視される 事前知識 C 標準ライブラリにおいて時刻の操作に関係するものは time.h (C++ では ctime) ヘッダに定義されている。ここで時刻を表現するデータ型は2つある: time_t と tm である。time_t が第一義的な型であり、それを人間が扱い易いように分解した副次的な構造体が tm という関係になっている。なので標準ライブラリには現在時刻を time_t として取得する関数 ( time_t time(time_t *) ) が先ずあり、そこから time_t と tm を相互に変換する関数が定義されている。 ここで time_t の定義は処理系依存である。C / C++ 標準はそれが算術型であることを求めているのみで (C11 からは実数型に厳格化された)、その実体は任意である。POSIX においては UNIX epoch (1970-01-01T00:00:00Z) からのうるう秒を除いた経過秒数であることが保証されており Linux や BSD の子孫も同様だが、この事実に依存するのは移植性のある方法ではない。 一方で tm は構造体であり、最低限必要なデータメンバが規定されている: int tm_year : 1900 年からの年数 int tm_mon : 月 (0-based; 即ち [0, 11]) int tm_mday : 月初からの日数 (1-based) int tm_hour : 時 (Military clock; 即ち [0, 23]) int tm_min : 分 int tm_sec : 秒 (うるう秒を含み得るので [0

BuckleScript が ReScript に改称し独自言語を導入した

Via: BuckleScript Good and Bad News - Psellos OCaml / ReasonML 文法と標準ライブラリを採用した JavaScript トランスパイラである BuckleScript が ReScript に改称した。 公式サイトによると改称の理由は、 Unifying the tools in one coherent platform and core team allows us to build features that wouldn’t be possible in the original BuckleScript + Reason setup. (単一のプラットフォームとコアチームにツールを統合することで従来の BuckleScript + Reason 体制では不可能であった機能開発が可能になる) とのこと。要は Facebook が主導する外部プロジェクトである ReasonML に依存せずに開発を進めていくためにフォークするという話で、Chromium のレンダリングエンジンが Apple の WebKit から Google 主導の Blink に切り替わったのと似た動機である (プログラミング言語の分野でも Object Pascal が Pascal を逸脱して Delphi Language になったとか PLT Scheme (の第一言語) が RnRS とは別路線に舵を切って Racket になったとか、割とよくある話である。) 公式ブログの Q&A によると OCaml / ReasonML 文法のサポートは継続され、既存の BuckleScript プロジェクトは問題なくビルドできるとのこと。ただし現時点で公式ドキュメントは ReScript 文法のみに言及しているなど、サポート水準のティアを分けて ReScript 文法を優遇することで移行を推進していく方針である。 上流である OCaml の更新は取り込み、AST の互換性も維持される。将来 ReScript から言語機能が削除されることは有り得るが、OCaml / ReasonML からは今日の BuckleScript が提供する機能すべてにアクセスできる。 現時点における ReScript の

macOS で GUI 版 Emacs を使う設定

macOS であっても端末エミュレータ上で CLI 版 Emacs を使っているプログラマは多いと思うが、端末側に修飾キーを取られたり東アジア文字の文字幅判定が狂ってウィンドウ描画が崩れたりなどしてあまり良いことがない。 それなら GUI 版の Emacs.app を使った方がマウスも使える上に treemacs などはアイコンも表示されてリッチな UI になる。 しかし何事も完璧とはいかないもので、CLI だと問題なかったものが GUI だと面倒になることがある。その最大の原因はシェルの子プロセスではないという点である。つまり macOS の GUI アプリケーションは launchd が起動しその環境変数やワーキングディレクトリを引き継ぐので、ファイルを開こうとしたらホームディレクトリ ( ~/ ) でなくルートディレクトリ ( / ) を見に行くし、ホームディレクトリなり /opt/local なりに好き勝手にインストールしたツールを run-* 関数やら shell やら flycheck やらで実行しようとしてもパスが通っていない。 ワーキングディレクトリに関しては簡単な解決策があり、 default-directory という変数をホームディレクトリに設定すれば良い。ただし起動時にスプラッシュスクリーンを表示する設定の場合、このバッファのワーキングディレクトリは command-line-default-directory で設定されており、デフォルト値が解決される前に適用されてしまうので併せて明示的に初期化する必要がある: (setq default-directory "~/") (setq command-line-default-directory "~/") 次にパスの問題だが、まさにこの問題を解決するために exec-path-from-shell というパッケージがある。これを使うとユーザのシェル設定を推定し、ログインシェルとして起動した場合の環境変数 PATH と MANPATH を取得して Emacs 上で同じ値を setenv する、という処理をやってくれる。MELPA にあるので package-install するだけで使えるようになる。 このパッケージは GUI

Perl 7 より先に Perl 5.34 が出るぞという話

Perl 5 の次期バージョンとして一部後方互換でない変更 (主に間接オブジェクト記法の削除とベストプラクティスのデフォルトでの有効化) を含んだメジャーバージョンアップである Perl 7 がアナウンスされたのは昨年の 6 月 のことだったが、その前に Perl 5 の次期周期リリースである Perl 5.34 が 5 月にリリース予定 である。 現在開発版は Perl 5.33.8 がリリースされておりユーザから見える変更は凍結、4 月下旬の 5.33.9 で全コードが凍結され 5 月下旬に 5.34.0 としてリリース予定とのこと。 そういうわけで事前に新機能の予習をしておく。 8進数数値リテラルの新構文 見た瞬間「マジかよ」と口に出た。これまで Perl はプレフィクス 0 がついた数値リテラルを8進数と見做してきたが、プレフィクスに 0o (zero, small o) も使えるようになる。 もちろんこれは2進数リテラルの 0b や 16進数リテラルの 0x との一貫性のためである。リテラルと同じ解釈で文字列を数値に変換する組み込み関数 oct も` 新構文を解するようになる。 昨今無数の言語に取り入れられているリテラル記法ではあるが、この記法の問題は o (small o) と 0 (zero) の区別が難しいことで、より悪いことに大文字も合法である: 0O755 Try / Catch 構文 Perl 5 のリリース以来 30 年ほど待たれた実験的「新機能」である。 Perl 5 における例外処理が特別な構文でなかったのは予約語を増やさない配慮だったはずだが、TryCatch とか Try::Tiny のようなモジュールが氾濫して当初の意図が無意味になったというのもあるかも知れない。 use feature qw/ try / ; no warnings qw/ experimental::try / ; try { failable_operation(); } catch ( $e ) { recover_from_error( $e ); } Raku (former Perl 6) だと CATCH (大文字なことに注意) ブロックが自分の宣言されたスコープ内で投げられた例外を捕らえる

Perl のサブルーチンシグネチャ早見表

Perl のサブルーチン引数といえば実引数への参照を保持する特殊配列 @_ を手続き的に分解するのが長らくの伝統だった。これはシェルの特殊変数 $@ に由来する意味論で、おそらく JavaScript の arguments 変数にも影響を与えている。 すべての Perl サブルーチンはプロトタイプ宣言がない限りリスト演算子なので、この流儀は一種合理的でもあるのだが、実用的にそれで良いかというとまったくそうではないという問題があった; 結局大多数のサブルーチンは定数個の引数を取るので、それを参照する形式的パラメータが宣言できる方が都合が良いのである。 そういうわけで実験的に導入されたサブルーチンシグネチャ機能により形式的パラメータが宣言できるようになったのは Perl 5.20 からである。その後 Perl 5.28 において出現位置がサブルーチン属性の後に移動したことを除けば Perl 5.34 リリース前夜の今まで基本的に変わっておらず、未だに実験的機能のままである。 おまじない シグネチャは前方互換性を持たない (構文的にプロトタイプと衝突している) 実験的機能なのでデフォルトでは無効になっている。 そのため明示的にプラグマで利用を宣言しなければならない: use feature qw/signatures/; no warnings qw/experimental::signatures/; どの途みんな say 関数のために使うので feature プラグマは問題ないだろう。実験的機能を断りなしに使うと怒られるので、 no warnings で確信犯であることをアピールする必要がある。 これでプラグマのスコープにおいてサブルーチンシグネチャ (と :prototype 属性; 後述) が利用可能になり、 従来のプロトタイプ構文が無効になる。 使い方 対訳を載せておく。シグネチャの方は実行時に引数チェックを行うので厳密には等価でないことに注意: # Old School use feature qw/signatures/ 1 sub f { my ($x) = @_; ... } sub f($x) { ... } 2 sub f { my ($x, undef, $y) = @_