スキップしてメイン コンテンツに移動

Project Euler - Problem 27

問題

しばらく止まってましたが今日から再開。

  • 原文

    Considering quadratics of the form:

    n2 + an + b, where |a| < 1000 and |b| < 1000

    Find the product of the coefficients, a and b, for the quadratic expression that produces the maximum number of primes for consecutive values of n, starting with n = 0.

  • 日本語訳

    |a| < 1000, |b| < 1000 として以下の二次式を考える (ここで|a|は絶対値):

    n2 + an + b

    n=0から始めて連続する整数で素数を生成したときに最長の長さとなる上の二次式の, 係数a, bの積を答えよ.

解答

最大探索範囲は-999 <= a <= 999、-999 <= b <= 999なので、およそ4,000,000通りの係数の組合せを試すことになります。組合せ毎に数列を生成して、それが素数か判定するわけですからたまりません。簡単な検討を加えて範囲を絞りましょう。

与えられた二次式をf(n)とおくと、f(0) = b、f(1) = a + b + 1です。 f(n)が長さ2以上の素数列を生成するならこれらは素数ですから、次のことがいえます:

  1. bは素数である
  2. a + b + 1は素数である
  3. b = 2のとき、aは偶数である
  4. それ以外のとき、aは奇数である

素数判定関数is_primeには同じ引数が与えられることがよくあるのでメモ化しています。

#!/usr/bin/perl

use strict;
use warnings;
use feature qw/say/;

sub prime_seq_len($$) {
  my ($coeff_a, $coeff_b) = @_;
  my $len = 0;
  my $n = 0;
  $len++, $n++ while is_prime($n * ($n + $coeff_a) + $coeff_b);
  return $len;
}

{
  my %primes = ( 2 => 1 );
  sub is_prime(_) {
    my $n = abs shift;

    unless (exists $primes{$n}) {
      return 0 if $n < 2 or $n % 2 == 0;

      my $is_prime = 1;
      for (my $i = 3; $i <= sqrt $n; $i += 2) {
        if ($n % $i == 0) {
          $is_prime = 0;
          last;
        }
      }
      $primes{$n} = $is_prime;
    }

    return $primes{$n};
  }
}

my $longest = 0;
my $product;
for my $coeff_b (grep { is_prime } -999 .. 999) {
  my $modulo = $coeff_b == 2 ? 0 : 1;
  my @a_cands = grep { $_ % 2 == $modulo
                         and is_prime($_ + $coeff_b + 1) } -999 .. 999;
  for my $coeff_a (@a_cands) {
    my $len = prime_seq_len($coeff_a, $coeff_b);
    if ($longest < $len) {
      $longest = $len;
      $product = $coeff_a * $coeff_b;
    }
  }
}

say $product;

追記

コメントで匿名氏に御指摘いただきました。

b = n = 2とするとf(2) = 22 + 2a + 2となり、これは明らかに(2より大きい)偶数です。 つまりb = 2のとき、生成する素数列の長さは高々2であり、無視できることになります。

前掲のコードでb = 2のケースを考慮している部分($moduloのあたり)は不要になりました:

my $longest = 0;
my $product;
for my $coeff_b (grep { is_prime } -999 .. 999) {
  my @a_cands = grep { $_ % 2 != 0
                         and is_prime($_ + $coeff_b + 1) } -999 .. 999;
  for my $coeff_a (@a_cands) {
    my $len = prime_seq_len($coeff_a, $coeff_b);
    if ($longest < $len) {
      $longest = $len;
      $product = $coeff_a * $coeff_b;
    }
  }
}

say $product;

コメント

  1. b = 2 の場合、n が偶数の時には必ず f(n) は偶数になってしまうので、f(n) が素数になるのは n が 2 未満の場合に限られます。
    最初から b = 2 の場合は考えなくてよいのでは?

    返信削除
  2. コメント承認が遅くなってすいませんでした。

    b=n=2の時偶数になるのはその通りです。
    完全に見落としていました。御指摘ありがとうございます。

    返信削除

コメントを投稿

このブログの人気の投稿

Perl 5 to 6 - 列挙型

これはMoritz Lenz氏のWebサイト Perlgeek.de で公開されているブログ記事 "Perl 5 to 6" Lesson 16 - Enums の日本語訳です。 原文は Creative Commons Attribution 3.0 Germany に基づいて公開されています。 本エントリには Creative Commons Attribution 3.0 Unported を適用します。 Original text: Copyright© 2008-2010 Moritz Lenz Japanese translation: Copyright© 2011 SATOH Koichi NAME "Perl 5 to 6" Lesson 16 - 列挙型 SYNOPSIS enum bit Bool <False True>; my $value = $arbitrary_value but True; if $value { say "Yes, it's true"; # 表示される } enum Day ('Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun'); if custom_get_date().Day == Day::Sat | Day::Sun { say "Weekend"; } DESCRIPTION 列挙型は用途の広い獣です。定数の列挙からなる低レベルのクラスであり、定数は典型的には整数や文字列です(が任意のものが使えます)。 これらの定数は派生型やメソッド、あるいは通常の値のようにふるまいます。 but 演算子でオブジェクトに結びつけることができ、これによって列挙型を値に「ミックスイン」できます: my $x = $today but Day::Tue; 列挙型の型名を関数のように使うこともでき、引数として値を指定できます: $x = $today but Day($weekday); ...

Project Euler - Problem 25

問題 原文 What is the first term in the Fibonacci sequence to contain 1000 digits? 日本語訳 1000桁になる最初の項の番号を答えよ. 解答 Gaucheのストリームライブラリを使ってみました。 (use util.stream) (define fibonacci-sequence (iterator->stream (lambda (yield end) (let loop ((a 1) (b 1)) (yield a) (loop b (+ a b)))))) (define (digits n) (define (digits-1 m acc) (if (< n m) acc (digits-1 (* m 10) (+ acc 1)))) (digits-1 1 0)) (define (solve) (+ 1 (stream-index (lambda (n) (= 1000 (digits n))) fibonacci-sequence))) (define (main argv) (display (solve)) (newline))

Perl の新 class 構文を使ってみる

Perl 5 のオブジェクト指向機能は基本的には Python の影響を受けたものだが、データを名前空間 (package) に bless する機構だけで Perl 4 以来の名前空間とサブルーチンをそのままクラスとメソッドに転換し第一級のオブジェクト指向システムとした言語設計は驚嘆に価する。 実際この言語のオブジェクトシステムは動的型付言語のオブジェクト指向プログラミングに要求されるおよそあらゆる機能を暗にサポートしており、CPAN には Moose を筆頭とした屋下屋オブジェクトシステムが複数存在しているがその多くは Pure Perl ライブラリである。つまり「やろうと思えば全部手書きで実現できる」わけである。 そういうわけで Perl のオブジェクト指向プログラミングサポートは機能面では (静的型検査の不在という現代的には極めて重大な欠如を除けば) 申し分ないのだが、しかし Moose その他の存在が示しているように一つ明らかな欠点がある。記述の冗長さだ。 コンストラクタを含むあらゆるメソッドは第一引数としてレシーバを受ける単なるサブルーチンとして明示的に書く必要があるし、オブジェクトのインスタンス変数 (a.k.a. プロパティ / データメンバ) は bless されたデータに直接的ないし間接的に プログラマ定義の方法 で格納されるためアクセス手段は実装依存である。これはカプセル化の観点からは望ましい性質だが、他者の書いたクラスを継承するときに問題となる。ある日データ表現を変更した親クラスがリリースされると突然自分の書いた子クラスが実行時エラーを起こすようになるわけだ。 そうならないためにはインスタンス変数へのアクセスに (protected な) アクセサを使う必要があるのだが、そのためには親クラスが明示的にそれらを提供している必要があるし、そもそも Perl にはメソッドのアクセス修飾子というものがないので完全な制御を与えるならばオブジェクトの内部状態がすべて public になってしまう。 そのような事情もあり、特にパフォーマンスが問題にならないようなアプリケーションコードでは Moose のようなリッチな語彙を提供するオブジェクトシステムを使うことが 公式のチュートリアルでも推奨 されてきた。Perl コアのオブジェクトシステムの改良は...

多分週刊チラシの裏 (Sep 28 - Oct 04, 2020)

Chrome Web Store が有料 Chrome 拡張の取扱を終了 Chrome Web Store で提供されている有料 Chrome 拡張及びアプリ内課金 API の両方が 2021 年 1 月いっぱいで廃止される。 開発者はそれまでに代替となるサードパーティの課金 API に移行し、購入済ライセンスの移行手段も用意する必要がある。 この決定の発表時点で新規の有料ないしアプリ内課金のある Chrome 拡張の新規登録は終了している。実際のところ 2020 年 3 月時点で既に「一時的に」停止されており、その措置が恒久化されただけとの由。 シェルスクリプティングには長いオプションを使え 「短いオプション (e.g., -x ) はコマンドライン上での略記である。スクリプトにおいては自分や将来の同僚のためにも長いオプション (e.g., ---do-something ) を与える方が理解が容易だろう」という主張。 異論の余地なく正論である。 CobWeb - COBOL to WebAssembly Compiler COBOL から WebAssembly へのコンパイラ。いやマジで。 Cloudflare が何を思ったか同社のサーバレス環境である Workers に COBOL 対応を追加した際 の成果物である。 COBOL から C へのトランスレータである GNU COBOL と C コードをコンパイルして WebAssembly を出力する Emscripten から成っており、他の言語に比べて軽量なバイナリを生成するとのこと。 「ウチではそんな風にはやらないんだ (“We don’t do that here”)」 昨今ソフトウェア開発のコミュニティでも Code of Conduct を用意するところが増えてきたが、コミュニティの文化を明文化するのは難しい。 長大な「べからず集」は息苦しいし、肯定的なガイドラインは時に抽象的で実効的に使えない。問題となるようなふるまいの動機が善意であった場合は特にそうだ。 仮に優れたガイドラインがあっても、それに基いて人を実際に咎めるのは骨が折れることである。初中やればコミュニティ内でも疎まれる。 話の分かる相手ならそれでもまだ説得する意義もあるが、Web 上の対話で当事者双方が納得し合っ...

Project Euler - Problem 31

問題 原文 How many different ways can £2 be made using any number of coins? 日本語訳 いくらかの硬貨を使って2ポンドを作る方法はいくつあるでしょうか? 解答 ポンドとペンスを別々に扱うのは面倒と無駄以外の何者でもないので、単位をペンスに統一します。よって問題は合計が200ペンスとなるコインの組み合わせは何通りあるかです。 コインを昇順にC i (i = 0, 1, 2, ..., 7)と番号づけることにします。 合計nペンスとなるC k 以下のコインを使った組み合わせをcc(n, k)と表すと、次のようになります: cc(0, k) = 1 cc(n, 1) = 1 cc(n, k) = Σ(cc(n - iC k , k - 1))、ただしi ∈ { 0 , 1, 2, ..., floor(n / C k ) } 副問題は同じものが何度も出てくるのでメモ化しています。 #!/usr/bin/env perl use strict; use warnings; use feature qw/say state/; use List::Util qw/sum/; sub coin_comb($;$); { my @coins = (1, 2, 5, 10, 20, 50, 100, 200); sub coin_comb($;$) { state %memos; my ($currency, $coin_idx) = @_; $coin_idx //= $#coins; return $memos{$currency, $coin_idx} if exists $memos{$currency, $coin_idx}; return 1 if $currency == 0; return 1 if $coin_idx == 0; use integer; $memos{$currency, $coin_idx} = sum map { coin_comb($currency - $coins[$coin_idx] * $_, $coin_idx...