スキップしてメイン コンテンツに移動

私家版 TypeScript 抽象データ型表現

TL, DR;

読んだ: TypeScriptの異常系表現のいい感じの落とし所 | Developers.IO

方向性はとても同意できるがデータがオブジェクトである積極的な理由がないのが分かる。今日び new Success(...) もあるまい。 構造的型付が原則なんだから Namespace Import する前提で型定義と関数を公開してしまった方が単純な FP スタイルで書けて勝手が良い。

そういうわけで僕ならこう書く。

使い方

import * as Result from './result';

function doSomethingFailable(): Result.T<number, Error> {
  const r = Math.random();
  return r < 0.5
    ? Result.success(r)
    : Result.failure(new Error('Something failed.'))
}

function orDefault<V>(result: Result.T<V, unknown>, defaultValue: V): V {
  return Result.match(result, {
    failure() { return defaultValue; },
    success(value) { return value; },
  });
}

const result = doSomethingFailable();
console.log(orDefault(result, NaN));  // Prints a number < 0.5, or NaN.

自明な flatMap / map がないのでより低水準な変換として match を提供しているが、もちろん型の利用者が合意できるなら Optional に類する定義を採っても良い:

function map<V, U, E>(f: V => U, result: Result.T<V, E>): Result.T<U, E> {
  return Result.match(result, {
    failure(value) { return Result.failure(value); },
    success(value) { return Result.success(f(value)); },
  });
}

function flatMap<V, U, E>(f: V => Result.T<U, E>, result: Result.T<V, E>): Result.T<U, E> {
  return Result.match(result, {
    failure(value) { return Result.failure(value); },
    success(value) { return f(value); },
  });
}

つまるところ何が違うか

値がユーザ定義クラスのインスタンスではなくて Object のインスタンスであることが違う。

JavaScript の用語だと両方オブジェクトに違いないが、後者は専ら構造体に類する複合データ型として使われるので、この記事では区別のために前者を特にオブジェクトとし、後者はレコードと呼ぶことにする。換言すると差異は値がオブジェクトではなくレコードであることである。

type T

このモジュールが提供する型は FailureSuccess そしてそれらの Union である T である。

何故最も主要な型が Result ではなく T なのかというと、Namespace Import が前提なので名前が冗長 (Result.Result) になるのを避けるためである。この流儀は OCaml から借用した。

その違いが何をもたらすか

脱カプセル化

端的に言うとカプセル化されなくなる。つまりデータ構造定義が公開インタフェースの一部になる。これを聞いて目尻が釣り上がる OO おじさん達はまわれ右。

静的型付された代数型の変更に憚るところはない。もし定義を変更する場合があったとして、それで互換性が破壊されるならビルドがちゃんと壊れるはずだ。コンパイラはエラー箇所を正しく列挙できるからそれを直せば良い。

だいたい Destructuring Assignment やら Rest/Spread Operator やらを使う時点でデータ表現はインタフェースの一部である。get / set で云々すればインタフェースと内部データ表現を分離することは不可能ではないが、そんなところに労力を費して見た目と意味論を乖離させるよりは直交的なデータ構造設計に腐心する方が生産的だろう。

new の除去

見た目の問題。任意の関数は値を返すのだ。コンストラクタが特別な地位にある必要はない。

副作用の明示

メソッドがレシーバの状態を変更するか否かシグネチャから分からないというのは C++ を除くほとんどのオブジェクト指向言語が抱えている欠陥である (「常識的にメソッドの名前で分かるだろ」という手合は素晴しい同僚に恵まれた運命に感謝した方が良い。)

データ表現にレコードを使うと値の操作は必然的に自由関数として定義することになるため、その操作が破壊的か非破壊的かはシグネチャで明示される:

interface T {
  x: string;
  y: number;
}

type S = Readonly<T>;

// Mutates the given object's |x| property.
function setX(obj: T, newValue: string): void {
  obj.x = newValue;
}

// Clone the given object with new |x| property.
function withX(obj: S, newValue: string): S {
  return { ...obj, x: newValue };
}

(ただし明示されるだけである。TypeScript は "strictFuntionTypes": true な環境でさえ不変オブジェクトを可変な同型オブジェクトにキャストできる variance 何ソレ言語なので呼出側が間違えると救われない。この辺は flow の方が整合性がある。)

また JavaScript でデータ変換パイプラインを書くときは lodash や ramda など関数指向の外部ライブラリを頼ることになるので、データ操作に自由関数を使うことは見た目の一貫性の点でも好ましい。

それにつけても with の惜しさよ

モジュールを Namespace Import すると当然だがその中の型や値は Namespace Object 経由で参照することになる。

これは設計の意図するところではあるが、const x: Optional.T<string> = Optional.orDefault(Optional.map(getOptional(...), f), 'default value'); などと書かれたら const O = Optional; とか const { map, orDefault } = Optional; したくなるのが人情であろう。

要は JavaScript の関数が多相性を持たないことが問題である (まあレコードをデータ表現に使う限り同じ型なので多相に仕様がないのだが。) map とか flatMap みたいな操作はほとんどあらゆるデータ型に定義されるので、複数のデータ型を同時に扱う場合に各実装を区別するには Namespace Object を含んだ完全修飾名で参照するしかない。

これは Haskell とか Scala とかだと勿論問題にならなくて、型クラスのインスタンスであると宣言しておけば勝手にアドホック多相になる。Common Lisp や Raku (former Perl 6) のようなジェネリック関数を動的にディスパッチするシステムでも、解決が実行時になることを別にすれば同様である。

一方 OCaml など型クラスを持たない ML 系の言語には実は JavaScript と同じ問題があるのだが、OCaml の場合は字句的スコープに限定して Namespace Object に相当するモジュールを開く let open という操作ができる:

module My_lazy = struct
  include Lazy

  let map f v =
    Lazy.from_fun (fun () -> f (Lazy.force v))

  let bind v f =
    Lazy.from_fun (fun () -> Lazy.force (Lazy.force v |> f))

  let ( >>= ) = bind
end

let () =
  let open My_lazy in
  from_val 42
  |> map string_of_int
  |> map print_endline
  |> force

一つの式中で複数の抽象データ型を使う場合には依然として一方に完全修飾名を使う必要があるなど注意は要るが、それでも大分簡潔になるのが分かると思う。

かつての JavaScript には同じ機能が存在した (厳密に言えば今でもある): with 文である。指定したオブジェクトをスコープ・チェーンの先頭に追加した字句的スコープを提供する構文で、つまりそのオブジェクトのプロパティに変数としてアクセスできようになる:

// CAUTION: JavaScript code, not TypeScript since the language does not support |with|.

import * as Result from './result';

with (Result) {
  const n = Math.random();
  const r = n < 0.5 ? success(n) : failure(new Error('higher than expected'));
  match(r, {
    failure(e) {
      console.log(e);
    },
    success(n) {
      ...
    },
  });
}

非常に便利なのだが実行時に動的に名前が導入されることが最適化の妨げになり性能へのペナルティが大きいことにより現在では使用が推奨されていない。TypeScript でも意図的にサポートされていない機能である。

コメント

このブログの人気の投稿

C の時間操作関数は tm 構造体の BSD 拡張を無視するという話

久しぶりに C++ (as better C) で真面目なプログラムを書いていて引っかかったので備忘録。 「拡張なんだから標準関数の挙動に影響するわけねえだろ」という常識人は読む必要はない。 要旨 time_t の表現は環境依存 サポートしている時刻は UTC とプロセスグローバルなシステム時刻 (local time) のみで、任意のタイムゾーン間の時刻変換を行う標準的な方法はない BSD / GNU libc は tm 構造体にタイムゾーン情報を含むが、tm -> time_t の変換 ( timegm / mktime ) においてその情報は無視される 事前知識 C 標準ライブラリにおいて時刻の操作に関係するものは time.h (C++ では ctime) ヘッダに定義されている。ここで時刻を表現するデータ型は2つある: time_t と tm である。time_t が第一義的な型であり、それを人間が扱い易いように分解した副次的な構造体が tm という関係になっている。なので標準ライブラリには現在時刻を time_t として取得する関数 ( time_t time(time_t *) ) が先ずあり、そこから time_t と tm を相互に変換する関数が定義されている。 ここで time_t の定義は処理系依存である。C / C++ 標準はそれが算術型であることを求めているのみで (C11 からは実数型に厳格化された)、その実体は任意である。POSIX においては UNIX epoch (1970-01-01T00:00:00Z) からのうるう秒を除いた経過秒数であることが保証されており Linux や BSD の子孫も同様だが、この事実に依存するのは移植性のある方法ではない。 一方で tm は構造体であり、最低限必要なデータメンバが規定されている: int tm_year : 1900 年からの年数 int tm_mon : 月 (0-based; 即ち [0, 11]) int tm_mday : 月初からの日数 (1-based) int tm_hour : 時 (Military clock; 即ち [0, 23]) int tm_min : 分 int tm_sec : 秒 (うるう秒を含み得るので [0...

js_of_ocaml の使い方

js_of_ocaml (jsoo) は Ocsigen が提供しているコンパイラである。その名の通り OCaml バイトコードから JavaScript コードを生成する。 これを使うことで OCaml で書いたプログラムを Web ブラウザや node.js で実行することができる。 インストール 単に OPAM を使えば良い: $ opam install js_of_ocaml js_of_ocaml-ocamlbuild js_of_ocaml-ppx バージョン 3.0 から OPAM パッケージが分割されたので、必要なライブラリやプリプロセッサは個別にインストールする必要がある。 とりあえず使うだけなら js_of_ocaml と js_of_ocaml-ppx の二つで十分。後述するように OCamlBuild でアプリケーションをビルドするなら js_of_ocaml-ocamlbuild も入れると良い。 これで js_of_ocaml コマンドがインストールされ、OCamlFind に js_of_ocaml 及びサブパッケージが登録される。 コンパイルの仕方 以下ソースファイル名は app.ml とし、ワーキングディレクトリにあるものとする。 手動でやる場合 一番安直な方法は、直接 js_of_ocaml コマンドを実行することである: $ # バイトコードにコンパイルする。js_of_ocaml.ppx は JavaScript オブジェクトの作成や操作の構文糖衣を使う場合に必要 $ ocamlfind ocamlc -package js_of_ocaml,js_of_ocaml.ppx -linkpkg -o app.byte app.ml $ # 得られたバイトコードを JavaScript にコンパイルする $ js_of_ocaml -o app.js app.byte OCamlBuild を使う場合 OCamlBuild を使う場合、.js 用のビルドルールを定義したディスパッチャが付属しているので myocamlbuild.ml でこれを使う: let () = Ocamlbuild_plugin . dispatch Ocamlbuild_js_of_ocaml . dispatcher $ # app.ml -...

BuckleScript が ReScript に改称し独自言語を導入した

Via: BuckleScript Good and Bad News - Psellos OCaml / ReasonML 文法と標準ライブラリを採用した JavaScript トランスパイラである BuckleScript が ReScript に改称した。 公式サイトによると改称の理由は、 Unifying the tools in one coherent platform and core team allows us to build features that wouldn’t be possible in the original BuckleScript + Reason setup. (単一のプラットフォームとコアチームにツールを統合することで従来の BuckleScript + Reason 体制では不可能であった機能開発が可能になる) とのこと。要は Facebook が主導する外部プロジェクトである ReasonML に依存せずに開発を進めていくためにフォークするという話で、Chromium のレンダリングエンジンが Apple の WebKit から Google 主導の Blink に切り替わったのと似た動機である (プログラミング言語の分野でも Object Pascal が Pascal を逸脱して Delphi Language になったとか PLT Scheme (の第一言語) が RnRS とは別路線に舵を切って Racket になったとか、割とよくある話である。) 公式ブログの Q&A によると OCaml / ReasonML 文法のサポートは継続され、既存の BuckleScript プロジェクトは問題なくビルドできるとのこと。ただし現時点で公式ドキュメントは ReScript 文法のみに言及しているなど、サポート水準のティアを分けて ReScript 文法を優遇することで移行を推進していく方針である。 上流である OCaml の更新は取り込み、AST の互換性も維持される。将来 ReScript から言語機能が削除されることは有り得るが、OCaml / ReasonML からは今日の BuckleScript が提供する機能すべてにアクセスできる。 現時点における ReScript の ...

libcoro で並行処理プログラムを書く

libcoro という C のライブラリがある。Perl Mongers にはおなじみ (だった) 協調スレッド実装である Coro.pm のバックエンドとして使われているライブラリで、作者は Coro と同じく Marc Lehmann 氏。 coro というのは Coroutine (コルーチン) の略で、要するに処理の進行を明示的に中断して別の実行コンテキストに切り替えたり、そこからさらに再開できる機構のことである。言語やプラットフォームによって Fiber と呼ばれるものとほぼ同義。 (ネイティヴ) スレッドとの違いはとどのつまり並行処理と並列処理の違いで、スレッドは同時に複数の実行コンテキストが進行し得るがコルーチンはある時点では複数の実行コンテキストのうち高々一つだけが実行され得る。 スレッドに対するコルーチンの利点は主に理解のし易さにある。スレッドの実行中断と再開は予測不可能なタイミングで起こるため、メモリその他の共有資源へのアクセスが常に競合し得る。一方コルーチンは自発的に実行を中断するまでプロセスの資源を独占しているため、コンテキスト・スイッチをまたがない限り共有資源の排他制御や同期などを考えなくて良い。 同時に一つのコルーチンしか実行されないということは、プロセッサのコア数に対して処理がスケールアウトしないことを意味する。ただしシングルスレッドのプログラムでも IO などの間はプロセッサが遊んでいるため、非同期 IO とコルーチンを組み合わせるなどして待ち時間に別の処理を行わせることで効率を高められることが多い。 また1コアでの性能に関しては、コンテキスト・スイッチの回数が減り、またスイッチング自体もユーザモードで完結するため、スレッドよりも高速である場合が多い。このため「軽量スレッド」とも呼ばれることがある。 libcoro の特徴 C で利用できるコルーチン実装は複数あって、 Wikipedia にある Coroutine の記事 を見ても片手では足りない数が挙げられている。 libcoro がその中でどう特徴付けられるかというとポータビリティが挙げられる。 実装のバックエンドは Windows の Fiber や POSIX の ucontext の他、 setjmp / longjmp に pthread 果てはアセンブラによる実...

Schemeでカリー化

Haskellの有名な特徴として、関数が勝手に カリー化 されるという点があります。 要するにHaskellの関数は常に部分適用可能になっていて、 f foo bar baz という関数適用は (((f foo) bar) baz) と解釈されています。これは非常に強力な機能で、汎用的な関数を目的に合わせて簡単に特殊化することができます。 Schemeやその他のLispでは、引数は必ず同時に与えないといけないので、カリー化したものを作ろうとするとクロージャを使って (define f (lambda (x) (lambda (y) (lambda (z) ...)))) とでもしなければなりません。しかも呼び出すときには (((f foo) bar) baz) と、1つずつ順番に適用する必要があります。 私が欲しいのは、"(Haskellが透過的にやっているように)与えられた引数を先頭から順に束縛し、足りない分を引数とするクロージャを返す"ような関数です。 ((f foo) bar baz) だろうが (f foo bar baz) だろうが (((f foo) bar) baz) だろうが同じ結果を返す関数を作りたいわけです。そこで、カリー化関数を作成するマクロを書きました。 (define-syntax curry (syntax-rules () ((_ (arg0) body ...) (lambda (arg0) body ...)) ((_ (arg0 arg1 ...) body ...) (lambda (arg0 . rest) (define applied (curry (arg1 ...) body ...)) (if (null? rest) applied (apply applied rest)))))) このマクロを使って作成した関数は、引数を先頭から束縛していき、すべての引数が揃ったときに値を返します。 (define greet (curry (when who) (display (string-append "...