スキップしてメイン コンテンツに移動

Algorithm::LibLinear の紹介

Notice: This article is outdated. Please refer an updated English tutorial.

要旨

かなり前になりますが、Algorithm::LibLinear という Perl モジュールを書きました。

これを使うと線形分類器などが高速に学習できます。テキストや画像の分類が応用として期待されます。

LIBLINEAR について

LIBLINEARLIBSVM と同じ台湾国立大学の Chih-Jen Lin 教授のチームが公開しているオープンソースの機械学習パッケージです。 関数のロジスティック回帰、サポートベクター回帰及び線形 SVM による多クラス分類を行うことができます。LIBSVM と違ってカーネル関数を使うことはできませんが、はるかに高速に動作します。

Algorithm::LibLinear について

LIBLINEAR には C++ で書かれたライブラリと、その機能を使って機械学習と分類・関数回帰を行うコマンドラインユーティリティが含まれています。 Algorithm::LibLinear はライブラリの機能を Perl からオブジェクト指向的に利用できるようにした上で、コマンドラインユーティリティの一部機能をライブラリ化して Perl で再実装したものです。

使い方

分類問題を解くときは、

  1. 訓練データセットの読み込み・スケーリング
  2. 学習器パラメータの設定
  3. 分類器の訓練
  4. 実データの分類

という手順で行います。

訓練データセットの読み込み

正解ラベルのついたデータを大量に用意して学習させます。

LIBSVM 形式のデータを読み込むか:

my $data_set = Algorithm::LibLinear::DataSet->load(string => <<'EOD');
1 1:0.1 2:0.1 4:0.1
-1 1:0.1 2:-0.1 3:0.1
...
EOD

HashRef として表現されたデータを使います:

my $data_set = Algorithm::LibLinear::DataSet->new(data_set => [
  +{ feature => +{ 1 => 0.1, 2 => 0.1, 4 => 0.1, }, label => 1 },
  +{ feature => +{ 1 => 0.1, 2 => -0.1, 3 => 0.1, }, label => -1 },
  ...
]);

データのスケーリング

線形分類器は与えられた入力ベクトルと訓練データから生成した重みベクトルの内積を取ってクラスを判定します。 入力ベクトルの特定の成分が大きな値域を持っていると、その成分が結果に大きな影響を与えることになります。これを避けるため、入力ベクトルの各成分の値域を揃えるスケーリング処理を行います。

my $scaling_parameter = Algorithm::LibLinear::ScalingParameter->new(
  data_set => $data_set,
  lower_bound => 0,
  upper_bound => 1,
);
my $scaled_data_set = $data_set->scale(parameter => $scaling_parameter);

なお疎なベクトルに対して lower_bound を非零にするとデータサイズが馬鹿みたいに増えるので注意してください。

学習パラメータの設定

データの用意ができたら次は学習パラメータの設定です。色々ありますが詳細は perldoc 参照。

my $learner = Algorithm::LibLinear->new(
  cost => 1.0,  # ペナルティコスト
  epsilon => 0.1,  # 収束判定
  solver => 'L2R_L2LOSS_SVC_DUAL',  # 分類器の学習に使うソルバ
);

全パラメータにデフォルト値があるので、そのままでも一応動きます:

my $learner = Algorithm::LibLinear->new;

分類器の訓練

Algorithm::LibLinaer の train メソッドを呼ぶと Algorithm::LibLinear::Model のインスタンスが返ってきます。これが分類器です。

my $classifier = $learner->train(data_set => $scaled_data_set);

実データの分類

訓練データセットに含まれない未知のデータに対しても、一番それっぽいラベルが返ってきます。

# 入力も訓練データと同じパラメータでスケーリングする
my $feature = Algorihtm::LibLinear::DataSet->new(data_set => [
   +{ feature => +{ 1 => 0.1, 2 => 0.1 }, label => 0 },
])->scale(parameter => $scaling_parameter)->as_arrayref->[0]{feature};
my $label = $classifier->predict(feature => $feature);

交差検定

学習パラメータの調整には精度評価が必要です。訓練データセットと精度評価用のテストデータセットを別々に用意するのは面倒なので、訓練データを n 個に分割し、n-1 個のブロックを訓練データ、1 個のブロックをテストデータとして精度評価を n 回行った平均を出す交差検定がよく使われます。

my $accuracy = $learner->cross_validation(
  data_set => $data_set,
  num_folds => 5,
);          
say $accuracy;

界隈では有名な Iris Data Set を使った多値分類:

#!/usr/bin/env perl

use v5.14;
use Algorithm::LibLinear;
use Algorithm::LibLinear::ScalingParameter;

my $label_id = 0;
my %label_ids;
my @data_set = map {
  chomp;
  my @columns = split /,/;

  # Algorithm::LibLinear は整数値のラベルしか取らないので ラベル → 整数 の辞書を作る
  my $label = pop @columns;
  $label_ids{$label} //= ++$label_id;

  # 素性は疎ベクトルとして HashRef で表現する
  my $feature_index = 0;
  my %feature = map { (++$feature_index => $_) } @columns;

  +{ feature => \%feature, label => $label_ids{$label} };
} <DATA>;
my $data_set = Algorithm::LibLinear::DataSet->new(data_set => \@data_set);

# ベクトルの各成分の値域を [-10, 10] にスケール
my $scaling_parameter = Algorithm::LibLinear::ScalingParameter->new(
  data_set => $data_set,
  lower_bound => -10,
  upper_bound => 10,
);
$data_set = $data_set->scale(parameter => $scaling_parameter);

# 識別器を訓練する
my $learner = Algorithm::LibLinear->new;
my $classifier = $learner->train(data_set => $data_set);

my %labels = reverse %label_ids;
my $test_feature = +{ 1 => 6.3, 2 => 2.5, 3 => 5.0, 4 => 1.9 };
$test_feature = Algorithm::LibLinear::DataSet->new(
    data_set => [ +{ feature => $test_feature, label => 0 } ],
)->scale(parameter => $scaling_parameter)->as_arrayref->[0]{feature};
my $predicted_label_id = $classifier->predict(feature => $test_feature);
say $labels{$predicted_label_id};  # 'Iris-virginica'

# Data source: Iris Data Set [http://archive.ics.uci.edu/ml/datasets/Iris].
__DATA__
5.1,3.5,1.4,0.2,Iris-setosa
4.9,3.0,1.4,0.2,Iris-setosa
4.7,3.2,1.3,0.2,Iris-setosa
4.6,3.1,1.5,0.2,Iris-setosa
5.0,3.6,1.4,0.2,Iris-setosa
5.4,3.9,1.7,0.4,Iris-setosa
4.6,3.4,1.4,0.3,Iris-setosa
5.0,3.4,1.5,0.2,Iris-setosa
4.4,2.9,1.4,0.2,Iris-setosa
4.9,3.1,1.5,0.1,Iris-setosa
5.4,3.7,1.5,0.2,Iris-setosa
4.8,3.4,1.6,0.2,Iris-setosa
4.8,3.0,1.4,0.1,Iris-setosa
4.3,3.0,1.1,0.1,Iris-setosa
5.8,4.0,1.2,0.2,Iris-setosa
5.7,4.4,1.5,0.4,Iris-setosa
5.4,3.9,1.3,0.4,Iris-setosa
5.1,3.5,1.4,0.3,Iris-setosa
5.7,3.8,1.7,0.3,Iris-setosa
5.1,3.8,1.5,0.3,Iris-setosa
5.4,3.4,1.7,0.2,Iris-setosa
5.1,3.7,1.5,0.4,Iris-setosa
4.6,3.6,1.0,0.2,Iris-setosa
5.1,3.3,1.7,0.5,Iris-setosa
4.8,3.4,1.9,0.2,Iris-setosa
5.0,3.0,1.6,0.2,Iris-setosa
5.0,3.4,1.6,0.4,Iris-setosa
5.2,3.5,1.5,0.2,Iris-setosa
5.2,3.4,1.4,0.2,Iris-setosa
4.7,3.2,1.6,0.2,Iris-setosa
4.8,3.1,1.6,0.2,Iris-setosa
5.4,3.4,1.5,0.4,Iris-setosa
5.2,4.1,1.5,0.1,Iris-setosa
5.5,4.2,1.4,0.2,Iris-setosa
4.9,3.1,1.5,0.1,Iris-setosa
5.0,3.2,1.2,0.2,Iris-setosa
5.5,3.5,1.3,0.2,Iris-setosa
4.9,3.1,1.5,0.1,Iris-setosa
4.4,3.0,1.3,0.2,Iris-setosa
5.1,3.4,1.5,0.2,Iris-setosa
5.0,3.5,1.3,0.3,Iris-setosa
4.5,2.3,1.3,0.3,Iris-setosa
4.4,3.2,1.3,0.2,Iris-setosa
5.0,3.5,1.6,0.6,Iris-setosa
5.1,3.8,1.9,0.4,Iris-setosa
4.8,3.0,1.4,0.3,Iris-setosa
5.1,3.8,1.6,0.2,Iris-setosa
4.6,3.2,1.4,0.2,Iris-setosa
5.3,3.7,1.5,0.2,Iris-setosa
5.0,3.3,1.4,0.2,Iris-setosa
7.0,3.2,4.7,1.4,Iris-versicolor
6.4,3.2,4.5,1.5,Iris-versicolor
6.9,3.1,4.9,1.5,Iris-versicolor
5.5,2.3,4.0,1.3,Iris-versicolor
6.5,2.8,4.6,1.5,Iris-versicolor
5.7,2.8,4.5,1.3,Iris-versicolor
6.3,3.3,4.7,1.6,Iris-versicolor
4.9,2.4,3.3,1.0,Iris-versicolor
6.6,2.9,4.6,1.3,Iris-versicolor
5.2,2.7,3.9,1.4,Iris-versicolor
5.0,2.0,3.5,1.0,Iris-versicolor
5.9,3.0,4.2,1.5,Iris-versicolor
6.0,2.2,4.0,1.0,Iris-versicolor
6.1,2.9,4.7,1.4,Iris-versicolor
5.6,2.9,3.6,1.3,Iris-versicolor
6.7,3.1,4.4,1.4,Iris-versicolor
5.6,3.0,4.5,1.5,Iris-versicolor
5.8,2.7,4.1,1.0,Iris-versicolor
6.2,2.2,4.5,1.5,Iris-versicolor
5.6,2.5,3.9,1.1,Iris-versicolor
5.9,3.2,4.8,1.8,Iris-versicolor
6.1,2.8,4.0,1.3,Iris-versicolor
6.3,2.5,4.9,1.5,Iris-versicolor
6.1,2.8,4.7,1.2,Iris-versicolor
6.4,2.9,4.3,1.3,Iris-versicolor
6.6,3.0,4.4,1.4,Iris-versicolor
6.8,2.8,4.8,1.4,Iris-versicolor
6.7,3.0,5.0,1.7,Iris-versicolor
6.0,2.9,4.5,1.5,Iris-versicolor
5.7,2.6,3.5,1.0,Iris-versicolor
5.5,2.4,3.8,1.1,Iris-versicolor
5.5,2.4,3.7,1.0,Iris-versicolor
5.8,2.7,3.9,1.2,Iris-versicolor
6.0,2.7,5.1,1.6,Iris-versicolor
5.4,3.0,4.5,1.5,Iris-versicolor
6.0,3.4,4.5,1.6,Iris-versicolor
6.7,3.1,4.7,1.5,Iris-versicolor
6.3,2.3,4.4,1.3,Iris-versicolor
5.6,3.0,4.1,1.3,Iris-versicolor
5.5,2.5,4.0,1.3,Iris-versicolor
5.5,2.6,4.4,1.2,Iris-versicolor
6.1,3.0,4.6,1.4,Iris-versicolor
5.8,2.6,4.0,1.2,Iris-versicolor
5.0,2.3,3.3,1.0,Iris-versicolor
5.6,2.7,4.2,1.3,Iris-versicolor
5.7,3.0,4.2,1.2,Iris-versicolor
5.7,2.9,4.2,1.3,Iris-versicolor
6.2,2.9,4.3,1.3,Iris-versicolor
5.1,2.5,3.0,1.1,Iris-versicolor
5.7,2.8,4.1,1.3,Iris-versicolor
6.3,3.3,6.0,2.5,Iris-virginica
5.8,2.7,5.1,1.9,Iris-virginica
7.1,3.0,5.9,2.1,Iris-virginica
6.3,2.9,5.6,1.8,Iris-virginica
6.5,3.0,5.8,2.2,Iris-virginica
7.6,3.0,6.6,2.1,Iris-virginica
4.9,2.5,4.5,1.7,Iris-virginica
7.3,2.9,6.3,1.8,Iris-virginica
6.7,2.5,5.8,1.8,Iris-virginica
7.2,3.6,6.1,2.5,Iris-virginica
6.5,3.2,5.1,2.0,Iris-virginica
6.4,2.7,5.3,1.9,Iris-virginica
6.8,3.0,5.5,2.1,Iris-virginica
5.7,2.5,5.0,2.0,Iris-virginica
5.8,2.8,5.1,2.4,Iris-virginica
6.4,3.2,5.3,2.3,Iris-virginica
6.5,3.0,5.5,1.8,Iris-virginica
7.7,3.8,6.7,2.2,Iris-virginica
7.7,2.6,6.9,2.3,Iris-virginica
6.0,2.2,5.0,1.5,Iris-virginica
6.9,3.2,5.7,2.3,Iris-virginica
5.6,2.8,4.9,2.0,Iris-virginica
7.7,2.8,6.7,2.0,Iris-virginica
6.3,2.7,4.9,1.8,Iris-virginica
6.7,3.3,5.7,2.1,Iris-virginica
7.2,3.2,6.0,1.8,Iris-virginica
6.2,2.8,4.8,1.8,Iris-virginica
6.1,3.0,4.9,1.8,Iris-virginica
6.4,2.8,5.6,2.1,Iris-virginica
7.2,3.0,5.8,1.6,Iris-virginica
7.4,2.8,6.1,1.9,Iris-virginica
7.9,3.8,6.4,2.0,Iris-virginica
6.4,2.8,5.6,2.2,Iris-virginica
6.3,2.8,5.1,1.5,Iris-virginica
6.1,2.6,5.6,1.4,Iris-virginica
7.7,3.0,6.1,2.3,Iris-virginica
6.3,3.4,5.6,2.4,Iris-virginica
6.4,3.1,5.5,1.8,Iris-virginica
6.0,3.0,4.8,1.8,Iris-virginica
6.9,3.1,5.4,2.1,Iris-virginica
6.7,3.1,5.6,2.4,Iris-virginica
6.9,3.1,5.1,2.3,Iris-virginica
5.8,2.7,5.1,1.9,Iris-virginica
6.8,3.2,5.9,2.3,Iris-virginica
6.7,3.3,5.7,2.5,Iris-virginica
6.7,3.0,5.2,2.3,Iris-virginica
6.3,2.5,5.0,1.9,Iris-virginica
6.5,3.0,5.2,2.0,Iris-virginica
6.2,3.4,5.4,2.3,Iris-virginica
5.9,3.0,5.1,1.8,Iris-virginica

参考資料

SVM による多クラス分類を真面目に行う場合は A Practical Guide to Support Vector Classification (PDF) を一読することをお勧めします。LIBSVM を前提として書かれていますが、カーネル関数の選定法 (要約:「ガウスカーネルを使え」) 以外のノウハウは LIBLINEAR でも同様です。

MLSS 2012 の Lin 教授による講義スライド冒頭の40ページくらいにも同様の内容があります。

終わりに

XS が難しかったです (小並感)。業務の都合でテキストの分類器が必要になって作ったので、引数の名前が labelfeature だったりして回帰問題を解くときには少しややこしいかも知れません。

学術っぽいツールは公式バインディングが Python やら R やら MATLAB やらしかない場合も多いので、CPAN にモジュール上げてみたいけどネタがないなんて時は狙い目です。 ちなみにテキストの分類をやるときは Python で書かれた LibShortText があるみたいなので、無理して Perl を使う理由がなければこっちの方が楽だと思います。俺はどっちでもいいけど。

コメント

このブログの人気の投稿

救急外来にかかったときの記録

子どもの頃にかかった記憶はあるが自分で行ったことはなかったのでメモしておく。 先日怪我をした。より具体的に云うとランニング中に転倒し顎を地面に叩きつけた。深夜の12時ごろの話である。 その時点ては両手の擦傷が痛いとか下顎の間接が痛いとか奥歯のセラミックが割れなくて幸いだったといった程度だが、マスクを外して見るとなにやら下部に血がついている。 顎にも擦傷があるのかとうんざりしながら歩いて帰り、血の滲んだマスクを捨てて傷口を洗おうとしたところで皮膚が割けて肉が見えているのに気付いた。 一瞬顔が青くなったが単身なので倒れるわけにはいかない。幸い血は固まっていてそれほど出血していないし、先程まで運動していたからかあまり痛みもない。 この時点で明白な選択肢は3つあった。即ち: 救急車を呼ぶ 自力で病院へ行き救急外来を受診する 応急処置して朝になったら近場の医院を受診する である。まず 3 は精神的に無理だと悟った。血も完全には止まっていないし、痛みだしたら冷静に行動できなくなるだろう。 1 はいつでも可能だったが、意識明瞭で移動にも支障がない状態では憚られた。救急車が受け入れ先病院を探すのにも時間がかかると聞く。 結局とりあえず 1 をバックアップ案とし、2 の自分で連絡して病院へ向かうことにした。まずは病院探しである。このときだいたい 00:30 AM。 最初に連絡したのは最寄りの都立病院の ER だった。ここならタクシーで10分もかからない、のだが、なんと ER が現在休止しているとの回答だった。そんなことがあるのかと驚愕したがどうしようもない。 近場に形成外科の救急外来の開いている病院はないか尋ねたところ 消防庁の相談センター の電話番号を案内された。 ここで4つの病院を紹介された。余談だが相談の対応は人間だが番号の案内は自動音声に切り替わるので録音の用意をした方が良い (一応2回くり返してくれる。) いずれも若干遠くタクシーで2、30分かかるが仕方がない。最初に連絡した最寄りの病院はその日形成外科の当直医師がいなかった。二件目でトリアージの質問をされ、受け入れ可能とのことだったので受診先が決定。このとき 00:45 AM。 診察時に脱ぎ易い服に着替え (このときまでランニングウェアだった)、健康保険証を持って病院へ向かう。ガーゼがないのでマス...

Perl の新 class 構文を使ってみる

Perl 5 のオブジェクト指向機能は基本的には Python の影響を受けたものだが、データを名前空間 (package) に bless する機構だけで Perl 4 以来の名前空間とサブルーチンをそのままクラスとメソッドに転換し第一級のオブジェクト指向システムとした言語設計は驚嘆に価する。 実際この言語のオブジェクトシステムは動的型付言語のオブジェクト指向プログラミングに要求されるおよそあらゆる機能を暗にサポートしており、CPAN には Moose を筆頭とした屋下屋オブジェクトシステムが複数存在しているがその多くは Pure Perl ライブラリである。つまり「やろうと思えば全部手書きで実現できる」わけである。 そういうわけで Perl のオブジェクト指向プログラミングサポートは機能面では (静的型検査の不在という現代的には極めて重大な欠如を除けば) 申し分ないのだが、しかし Moose その他の存在が示しているように一つ明らかな欠点がある。記述の冗長さだ。 コンストラクタを含むあらゆるメソッドは第一引数としてレシーバを受ける単なるサブルーチンとして明示的に書く必要があるし、オブジェクトのインスタンス変数 (a.k.a. プロパティ / データメンバ) は bless されたデータに直接的ないし間接的に プログラマ定義の方法 で格納されるためアクセス手段は実装依存である。これはカプセル化の観点からは望ましい性質だが、他者の書いたクラスを継承するときに問題となる。ある日データ表現を変更した親クラスがリリースされると突然自分の書いた子クラスが実行時エラーを起こすようになるわけだ。 そうならないためにはインスタンス変数へのアクセスに (protected な) アクセサを使う必要があるのだが、そのためには親クラスが明示的にそれらを提供している必要があるし、そもそも Perl にはメソッドのアクセス修飾子というものがないので完全な制御を与えるならばオブジェクトの内部状態がすべて public になってしまう。 そのような事情もあり、特にパフォーマンスが問題にならないようなアプリケーションコードでは Moose のようなリッチな語彙を提供するオブジェクトシステムを使うことが 公式のチュートリアルでも推奨 されてきた。Perl コアのオブジェクトシステムの改良は...

BuckleScript が ReScript に改称し独自言語を導入した

Via: BuckleScript Good and Bad News - Psellos OCaml / ReasonML 文法と標準ライブラリを採用した JavaScript トランスパイラである BuckleScript が ReScript に改称した。 公式サイトによると改称の理由は、 Unifying the tools in one coherent platform and core team allows us to build features that wouldn’t be possible in the original BuckleScript + Reason setup. (単一のプラットフォームとコアチームにツールを統合することで従来の BuckleScript + Reason 体制では不可能であった機能開発が可能になる) とのこと。要は Facebook が主導する外部プロジェクトである ReasonML に依存せずに開発を進めていくためにフォークするという話で、Chromium のレンダリングエンジンが Apple の WebKit から Google 主導の Blink に切り替わったのと似た動機である (プログラミング言語の分野でも Object Pascal が Pascal を逸脱して Delphi Language になったとか PLT Scheme (の第一言語) が RnRS とは別路線に舵を切って Racket になったとか、割とよくある話である。) 公式ブログの Q&A によると OCaml / ReasonML 文法のサポートは継続され、既存の BuckleScript プロジェクトは問題なくビルドできるとのこと。ただし現時点で公式ドキュメントは ReScript 文法のみに言及しているなど、サポート水準のティアを分けて ReScript 文法を優遇することで移行を推進していく方針である。 上流である OCaml の更新は取り込み、AST の互換性も維持される。将来 ReScript から言語機能が削除されることは有り得るが、OCaml / ReasonML からは今日の BuckleScript が提供する機能すべてにアクセスできる。 現時点における ReScript の ...

Perl 5.42 が出たので perldelta を読んだ

去る2025年7月2日に Perl 5.42 がリリースされた。ので例によって perldelta を一通り眺めた。 このバージョンは実験的機能である組込みのクラス構文の実装が進展した。 他にもパフォーマンスの改良、組み込み関数・演算子・C レベル API の追加、多数のバグ修正があるが劇的な変化ではなく、発見・修正された脆弱性もかなり限定的な問題なので刺さる機能がなければ急いで移行する必要はあまりないように思われる。 以下主だった新機能の抜粋。 source::encoding プラグマ ソースコードが特定の文字エンコーディングで記述されていることを宣言するプラグマ。サポートされているエンコーディングは ASCII と UTF-8 のみである。 use source::encoding 'ascii' が宣言された字句的スコープにおいて非 ASCII 文字を記述するとコンパイル時エラーが発生するようになる。 use source::encoding 'utf8' は単に use utf8 のシノニムである。 Perl 5 は 2000 年にリリースされたバージョン 5.6 から UTF-8 によるソースコード記述をサポートしているが、後方互換性のため既定では ASCII を前提としており、 utf8 プラグマを使わない限り文字列リテラルや RegExp リテラルはバイト列として解釈されるし、識別子にも英数字および '_' しか使うことができない。 識別子はともかく「リテラルは既定でバイト列である」という意味論は極めて誤用しやすい。Unicode 文字列のつもりで渡した値が意図せずバイト列であったために実行時警告・エラーを得た経験は非英語圏のプログラマなら一度ならずあるだろう。 このプラグマはそのような初歩的なバグをコンパイル時に検出することで、Perl プログラムの最も頻出するエラーの一つを実質的に解消しようとしている。 ちなみに use v5.42 すると自動で use source::encoding 'ascii' も有効になるので、今まさに警告を吐いているようなアプリケーションをアップグレードする際は注意が必要である。 any / all 演算子 実験的...

Perl 7 より先に Perl 5.34 が出るぞという話

Perl 5 の次期バージョンとして一部後方互換でない変更 (主に間接オブジェクト記法の削除とベストプラクティスのデフォルトでの有効化) を含んだメジャーバージョンアップである Perl 7 がアナウンスされたのは昨年の 6 月 のことだったが、その前に Perl 5 の次期周期リリースである Perl 5.34 が 5 月にリリース予定 である。 現在開発版は Perl 5.33.8 がリリースされておりユーザから見える変更は凍結、4 月下旬の 5.33.9 で全コードが凍結され 5 月下旬に 5.34.0 としてリリース予定とのこと。 そういうわけで事前に新機能の予習をしておく。 8進数数値リテラルの新構文 見た瞬間「マジかよ」と口に出た。これまで Perl はプレフィクス 0 がついた数値リテラルを8進数と見做してきたが、プレフィクスに 0o (zero, small o) も使えるようになる。 もちろんこれは2進数リテラルの 0b や 16進数リテラルの 0x との一貫性のためである。リテラルと同じ解釈で文字列を数値に変換する組み込み関数 oct も` 新構文を解するようになる。 昨今無数の言語に取り入れられているリテラル記法ではあるが、この記法の問題は o (small o) と 0 (zero) の区別が難しいことで、より悪いことに大文字も合法である: 0O755 Try / Catch 構文 Perl 5 のリリース以来 30 年ほど待たれた実験的「新機能」である。 Perl 5 における例外処理が特別な構文でなかったのは予約語を増やさない配慮だったはずだが、TryCatch とか Try::Tiny のようなモジュールが氾濫して当初の意図が無意味になったというのもあるかも知れない。 use feature qw/ try / ; no warnings qw/ experimental::try / ; try { failable_operation(); } catch ( $e ) { recover_from_error( $e ); } Raku (former Perl 6) だと CATCH (大文字なことに注意) ブロックが自分の宣言されたスコープ内で投げられた例外を捕らえる...