スキップしてメイン コンテンツに移動

Algorithm::SVM の注意点

要旨

Algorithm::SVM は極めて有用だけど API がなんか変なので注意が必要。

詳説

CPAN に Algorithm::SVM1 というモジュールがあります。これ Support Vector Machine (SVM)2 を提供する LIBSVM3 という有名なライブラリの Perl バインディングなのですが、なんか API に癖があるので注意点を解説します。

まず使い方を簡単に紹介します:

use strict;
use warnings;
use Algorithm::SVM;

my @data_set;
while (<DATA>) {
  chomp;
  my ($label, $vector) = split /:\s+/, $_, 2;
  my @vector = split /,\s+/, $vector;
  my $data = Algorithm::SVM::DataSet->new(
    DataSet => \@vector,
    Label => $label,
  );
  push @data_set, $data;
}

# 本当はパラメータ調整が要るけど省略。全部デフォルトなのでガウスカーネル利用の C-SVC になる。
my $svm = Algorithm::SVM->new;
# 分類器を訓練する。
$svm->train(@data_set);

# ラベル1に分類されるべき未知のデータ。
my $test_data = Algorithm::SVM::DataSet->new(
  DataSet => [ 4.6, 3.2, 1.4, 0.2 ],
  # ラベルは未知なので仮に 0 とする。単に無視されるので -1 でも 65536 でも 42 でも良い。
  Label => 0,
);
# 未知データを分類。1 が返るはず。
my $label = $svm->predict($test_data);
print "$label\n";

# Iris Data Set (http://archive.ics.uci.edu/ml/datasets/Iris) より一部抜粋の上形式を変更。
# <label>: <vector elm1>, <vector elm2>, ...
__DATA__
1: 5.1, 3.5, 1.4, 0.2
1: 4.9, 3.0, 1.4, 0.2
2: 7.0, 3.2, 4.7, 1.4
2: 6.4, 3.2, 4.5, 1.5
3: 6.3, 3.3, 6.0, 2.5
3: 5.8, 2.7, 5.1, 1.9
...

DataSet がデータセットじゃない

SVM で訓練・分類されるべき (正解ラベル付き) ベクトルを表現するために Algorithm::SVM::DataSet というクラスが用意されていますが、このクラスが表現するのは1個のベクトルです。つまりデータセットじゃなくてデータです。Algorithm::SVM->train メソッドで訓練するときにはデータセットとして Algorithm::SVM::DataSet の配列を渡す必要があります。

分類時にもラベルが必要

未知データを分類する Algorithm::SVM->predict メソッドのパラメータは Algorithm::SVM::DataSet オブジェクトです。Algorithm::SVM::DataSet->new は名前付きパラメータとしてベクトル (DataSet) と正解ラベル (Label) を取りますが、正解ラベルは必須パラメータです。 つまりラベルが未知のデータに対してもラベルを与えてやらなければなりません。割と意味不明ですが、predict ではラベルは単に無視されるのでダミーのラベルを与えてやれば良いです。

疎ベクトルの与え方

Algorithm::SVM::DataSet->newDataSet パラメータは ArrayRef を取ります。ところで問題によってはほとんどの成分が 0 である (i.e., 疎である) ようなベクトルを扱う場合があり、このような問題のデータを配列で表現するとメモリの無駄です。 例えば1万次元ベクトルの 1123 番目と 5813 番目の要素だけが 1 のようなベクトルを表現する場合、[ (0) x 1122, 1, (0) x 4689, 1, (0) x 4187 ] という具合になってほとんど 0 です。もし HashRef で表現できるなら +{ 1123 => 1, 5813 => 1 } といった感じになってより簡潔かつ省メモリです。

実際 LIBSVM の内部ではベクトルは連想リストとして表現されていて、ArrayRef でしか受けつけないのはバインディングのコンストラクタの都合です。疎ベクトルのつもりで 0 だらけの ArrayRef をコンストラクタに渡すと、値 0 の無駄なデータで連想リストが伸びて、メモリ使用量だけでなく計算量も増大します。

これを避けるためには成分をコンストラクタから与えず、Algorithm::SVM::DataSet->attribute を使用します。このメソッドはベクトルの成分と値を併せて指定することで非零成分だけを連想リストに追加できます:

sub sparse_data {
  my ($sparse_vector) = @_;
  my $data = Algorithm::SVM::DataSet->new(Label => 0);
  # 番号が若い成分を追加すると挿入ソートが走るので若い順に追加していく方が速い。
  for my $index (sort { $a <=> $b } keys %$sparse_vector) {
    $data->attribute($index => $sparse_vector->{$index});
  }
  return $data;
}
my $sparse_data = sparse_data(+{ 1123 => 1, 5813 => 1 });

宣伝

カーネル関数を使わない線形 SVM を利用したい場合、LIBLINEAR ベースの拙作 Algorithm::LibLinear4 の方が高速です。API もこっちの方が明解です (当社比)


  1. https://metacpan.org/pod/Algorithm::SVM ↩

  2. http://ja.wikipedia.org/wiki/%E3%82%B5%E3%83%9D%E3%83%BC%E3%83%88%E3%83%99%E3%82%AF%E3%82%BF%E3%83%BC%E3%83%9E%E3%82%B7%E3%83%B3 ↩

  3. http://www.csie.ntu.edu.tw/~cjlin/libsvm/ ↩

  4. https://metacpan.org/pod/Algorithm::LibLinear ↩

コメント

このブログの人気の投稿

開発環境の構築に asdf が便利なので anyenv から移行した

プロジェクト毎に異なるバージョンの言語処理系やツールを管理するために、pyenv や nodenv など *env の利用はほとんど必須となっている。 これらはほとんど一貫したコマンド体系を提供しており、同じ要領で様々な環境構築ができる非常に便利なソフトウェアだが、それを使うことで別の問題が出てくる: *env 自身の管理である。 無数の *env をインストールし、シェルを設定し、場合によりプラグインを導入し、アップデートに追従するのは非常に面倒な作業だ。 幸いなことにこれをワンストップで解決してくれるソリューションとして anyenv がある。これは各種 *env のパッケージマネージャというべきもので、一度 anyenv をインストールすれば複数の *env を簡単にインストールして利用できる。さらに anyenv-update プラグインを導入すればアップデートまでコマンド一発で完了する。素晴らしい。 そういうわけでもう長いこと anyenv を使ってきた。それで十分だった。 ——のだが、 ここにもう一つ、対抗馬となるツールがある。 asdf である。anyenv に対する asdf の優位性は大きく2つある: 一貫性と多様性だ。 一貫性 “Manage multiple runtime versions with a single CLI tool” という触れ込み通り、asdf は様々な言語やツールの管理について一貫したインタフェースを提供している。対して anyenv は *env をインストールするのみで、各 *env はそれぞれ個別のインタフェースを持っている。 基本的なコマンド体系は元祖である rbenv から大きく外れないにしても、例えば jenv のように単体で処理系を導入する機能を持たないものもある。それらの差異はユーザが把握し対応する必要がある。 多様性 asdf はプラグインシステムを持っている。というより asdf 本体はインタフェースを規定するだけで、環境構築の実務はすべてプラグイン任せである。 そのプラグインの数は本稿を書いている時点でおよそ 300 を数える。これは言語処理系ばかりでなく jq などのユーティリティや MySQL のようなミドルウェアも含むが、いずれにしても膨大なツールが asdf を使えば...

C の時間操作関数は tm 構造体の BSD 拡張を無視するという話

久しぶりに C++ (as better C) で真面目なプログラムを書いていて引っかかったので備忘録。 「拡張なんだから標準関数の挙動に影響するわけねえだろ」という常識人は読む必要はない。 要旨 time_t の表現は環境依存 サポートしている時刻は UTC とプロセスグローバルなシステム時刻 (local time) のみで、任意のタイムゾーン間の時刻変換を行う標準的な方法はない BSD / GNU libc は tm 構造体にタイムゾーン情報を含むが、tm -> time_t の変換 ( timegm / mktime ) においてその情報は無視される 事前知識 C 標準ライブラリにおいて時刻の操作に関係するものは time.h (C++ では ctime) ヘッダに定義されている。ここで時刻を表現するデータ型は2つある: time_t と tm である。time_t が第一義的な型であり、それを人間が扱い易いように分解した副次的な構造体が tm という関係になっている。なので標準ライブラリには現在時刻を time_t として取得する関数 ( time_t time(time_t *) ) が先ずあり、そこから time_t と tm を相互に変換する関数が定義されている。 ここで time_t の定義は処理系依存である。C / C++ 標準はそれが算術型であることを求めているのみで (C11 からは実数型に厳格化された)、その実体は任意である。POSIX においては UNIX epoch (1970-01-01T00:00:00Z) からのうるう秒を除いた経過秒数であることが保証されており Linux や BSD の子孫も同様だが、この事実に依存するのは移植性のある方法ではない。 一方で tm は構造体であり、最低限必要なデータメンバが規定されている: int tm_year : 1900 年からの年数 int tm_mon : 月 (0-based; 即ち [0, 11]) int tm_mday : 月初からの日数 (1-based) int tm_hour : 時 (Military clock; 即ち [0, 23]) int tm_min : 分 int tm_sec : 秒 (うるう秒を含み得るので [0...

js_of_ocaml の使い方

js_of_ocaml (jsoo) は Ocsigen が提供しているコンパイラである。その名の通り OCaml バイトコードから JavaScript コードを生成する。 これを使うことで OCaml で書いたプログラムを Web ブラウザや node.js で実行することができる。 インストール 単に OPAM を使えば良い: $ opam install js_of_ocaml js_of_ocaml-ocamlbuild js_of_ocaml-ppx バージョン 3.0 から OPAM パッケージが分割されたので、必要なライブラリやプリプロセッサは個別にインストールする必要がある。 とりあえず使うだけなら js_of_ocaml と js_of_ocaml-ppx の二つで十分。後述するように OCamlBuild でアプリケーションをビルドするなら js_of_ocaml-ocamlbuild も入れると良い。 これで js_of_ocaml コマンドがインストールされ、OCamlFind に js_of_ocaml 及びサブパッケージが登録される。 コンパイルの仕方 以下ソースファイル名は app.ml とし、ワーキングディレクトリにあるものとする。 手動でやる場合 一番安直な方法は、直接 js_of_ocaml コマンドを実行することである: $ # バイトコードにコンパイルする。js_of_ocaml.ppx は JavaScript オブジェクトの作成や操作の構文糖衣を使う場合に必要 $ ocamlfind ocamlc -package js_of_ocaml,js_of_ocaml.ppx -linkpkg -o app.byte app.ml $ # 得られたバイトコードを JavaScript にコンパイルする $ js_of_ocaml -o app.js app.byte OCamlBuild を使う場合 OCamlBuild を使う場合、.js 用のビルドルールを定義したディスパッチャが付属しているので myocamlbuild.ml でこれを使う: let () = Ocamlbuild_plugin . dispatch Ocamlbuild_js_of_ocaml . dispatcher $ # app.ml -...

Perl の新 class 構文を使ってみる

Perl 5 のオブジェクト指向機能は基本的には Python の影響を受けたものだが、データを名前空間 (package) に bless する機構だけで Perl 4 以来の名前空間とサブルーチンをそのままクラスとメソッドに転換し第一級のオブジェクト指向システムとした言語設計は驚嘆に価する。 実際この言語のオブジェクトシステムは動的型付言語のオブジェクト指向プログラミングに要求されるおよそあらゆる機能を暗にサポートしており、CPAN には Moose を筆頭とした屋下屋オブジェクトシステムが複数存在しているがその多くは Pure Perl ライブラリである。つまり「やろうと思えば全部手書きで実現できる」わけである。 そういうわけで Perl のオブジェクト指向プログラミングサポートは機能面では (静的型検査の不在という現代的には極めて重大な欠如を除けば) 申し分ないのだが、しかし Moose その他の存在が示しているように一つ明らかな欠点がある。記述の冗長さだ。 コンストラクタを含むあらゆるメソッドは第一引数としてレシーバを受ける単なるサブルーチンとして明示的に書く必要があるし、オブジェクトのインスタンス変数 (a.k.a. プロパティ / データメンバ) は bless されたデータに直接的ないし間接的に プログラマ定義の方法 で格納されるためアクセス手段は実装依存である。これはカプセル化の観点からは望ましい性質だが、他者の書いたクラスを継承するときに問題となる。ある日データ表現を変更した親クラスがリリースされると突然自分の書いた子クラスが実行時エラーを起こすようになるわけだ。 そうならないためにはインスタンス変数へのアクセスに (protected な) アクセサを使う必要があるのだが、そのためには親クラスが明示的にそれらを提供している必要があるし、そもそも Perl にはメソッドのアクセス修飾子というものがないので完全な制御を与えるならばオブジェクトの内部状態がすべて public になってしまう。 そのような事情もあり、特にパフォーマンスが問題にならないようなアプリケーションコードでは Moose のようなリッチな語彙を提供するオブジェクトシステムを使うことが 公式のチュートリアルでも推奨 されてきた。Perl コアのオブジェクトシステムの改良は...

BuckleScript が ReScript に改称し独自言語を導入した

Via: BuckleScript Good and Bad News - Psellos OCaml / ReasonML 文法と標準ライブラリを採用した JavaScript トランスパイラである BuckleScript が ReScript に改称した。 公式サイトによると改称の理由は、 Unifying the tools in one coherent platform and core team allows us to build features that wouldn’t be possible in the original BuckleScript + Reason setup. (単一のプラットフォームとコアチームにツールを統合することで従来の BuckleScript + Reason 体制では不可能であった機能開発が可能になる) とのこと。要は Facebook が主導する外部プロジェクトである ReasonML に依存せずに開発を進めていくためにフォークするという話で、Chromium のレンダリングエンジンが Apple の WebKit から Google 主導の Blink に切り替わったのと似た動機である (プログラミング言語の分野でも Object Pascal が Pascal を逸脱して Delphi Language になったとか PLT Scheme (の第一言語) が RnRS とは別路線に舵を切って Racket になったとか、割とよくある話である。) 公式ブログの Q&A によると OCaml / ReasonML 文法のサポートは継続され、既存の BuckleScript プロジェクトは問題なくビルドできるとのこと。ただし現時点で公式ドキュメントは ReScript 文法のみに言及しているなど、サポート水準のティアを分けて ReScript 文法を優遇することで移行を推進していく方針である。 上流である OCaml の更新は取り込み、AST の互換性も維持される。将来 ReScript から言語機能が削除されることは有り得るが、OCaml / ReasonML からは今日の BuckleScript が提供する機能すべてにアクセスできる。 現時点における ReScript の ...