スキップしてメイン コンテンツに移動

投稿

8月, 2020の投稿を表示しています

LIBLINEAR 2.41 で One-class SVM が使えるようになったので Perl から触ってみよう

改訂 (Sep 15, 2020): 必要のない手順を含んでいたのでサンプルコードと記述を修正しました。 CPAN に Algorithm::LibLinear 0.22 がリリースされました (しました。) 高速な線形 SVM およびロジスティック回帰による複数の機械学習アルゴリズムを実装したライブラリである LIBLINEAR への Perl バインディングです。 利用している LIBLINEAR のバージョンが LIBLINEAR 2.30 から LIBLINEAR 2.41 に上がったことで新しいソルバが追加され、One-class SVM (OC-SVM) による一値分類が利用可能になっています (しました。) OC-SVM って何 一値分類を SVM でやること。 一値分類って何 ある値が学習したクラスに含まれるか否かを決定する問題。 HBO の「シリコンバレー」に出てきた「ホットドッグ」と「ホットドッグ以外」を識別するアプリが典型。「ホットドッグ以外」の方は犬でも神でも一つの指輪でも何でも含まれるのがミソ。 二値分類の場合正反両者のデータを集める必要があるのに対して、一値分類の学習器は正例データのみしか要求しない (ものが多い。) 主な用途は外れ値検出で、もちろんホットドッグやホットドッグ様のものを検出したりもできる。 使い方 手順自体は他の二値ないし多値分類問題と同じです。つまり、 訓練パラメータを決めて 訓練データセットで訓練して テストデータセットで確度を検証して 十分良くなったらモデルを保存する といういつもの流れ。 訓練パラメータ use 5.032 ; use Algorithm::LibLinear ; my $learner = Algorithm::LibLinear ->new( epsilon => 0.01 , nu => 0.75 , solver => ' ONECLASS_SVM ' , ); solver => 'ONECLASS_SVM' が一値分類用のソルバです。LIBLINEAR の train コマンドで言うところの -s 21 。 OC-SVM の良いところは (ハイパー)...